• 제목/요약/키워드: Supervised and Un-Supervised Learning

검색결과 8건 처리시간 0.028초

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

Sentiment Analysis to Evaluate Different Deep Learning Approaches

  • Sheikh Muhammad Saqib ;Tariq Naeem
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.83-92
    • /
    • 2023
  • The majority of product users rely on the reviews that are posted on the appropriate website. Both users and the product's manufacturer could benefit from these reviews. Daily, thousands of reviews are submitted; how is it possible to read them all? Sentiment analysis has become a critical field of research as posting reviews become more and more common. Machine learning techniques that are supervised, unsupervised, and semi-supervised have worked very hard to harvest this data. The complicated and technological area of feature engineering falls within machine learning. Using deep learning, this tedious process may be completed automatically. Numerous studies have been conducted on deep learning models like LSTM, CNN, RNN, and GRU. Each model has employed a certain type of data, such as CNN for pictures and LSTM for language translation, etc. According to experimental results utilizing a publicly accessible dataset with reviews for all of the models, both positive and negative, and CNN, the best model for the dataset was identified in comparison to the other models, with an accuracy rate of 81%.

Determining Feature-Size for Text to Numeric Conversion based on BOW and TF-IDF

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.283-287
    • /
    • 2022
  • Machine Learning is the most popular method used in data science. Growth of data is not only numeric data but also text data. Most of the algorithm of supervised and unsupervised machine learning algorithms use numeric data. Now it is required to convert text data into numeric. There are many techniques for this conversion. Researcher confuses which technique is best in what situation. Here in proposed work BOW (Bag-of-Words) and TF-IDF (Term-Frequency-Inverse-Document-Frequency) has been studied based on different features to determine best method. After experimental results on text data, TF-IDF and BOW both provide better performance at range from 100 to 150 number of features.

Data Security on Cloud by Cryptographic Methods Using Machine Learning Techniques

  • Gadde, Swetha;Amutharaj, J.;Usha, S.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.342-347
    • /
    • 2022
  • On Cloud, the important data of the user that is protected on remote servers can be accessed via internet. Due to rapid shift in technology nowadays, there is a swift increase in the confidential and pivotal data. This comes up with the requirement of data security of the user's data. Data is of different type and each need discrete degree of conservation. The idea of data security data science permits building the computing procedure more applicable and bright as compared to conventional ones in the estate of data security. Our focus with this paper is to enhance the safety of data on the cloud and also to obliterate the problems associated with the data security. In our suggested plan, some basic solutions of security like cryptographic techniques and authentication are allotted in cloud computing world. This paper put your heads together about how machine learning techniques is used in data security in both offensive and defensive ventures, including analysis on cyber-attacks focused at machine learning techniques. The machine learning technique is based on the Supervised, UnSupervised, Semi-Supervised and Reinforcement Learning. Although numerous research has been done on this topic but in reference with the future scope a lot more investigation is required to be carried out in this field to determine how the data can be secured more firmly on cloud in respect with the Machine Learning Techniques and cryptographic methods.

Comprehensive review on Clustering Techniques and its application on High Dimensional Data

  • Alam, Afroj;Muqeem, Mohd;Ahmad, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.237-244
    • /
    • 2021
  • Clustering is a most powerful un-supervised machine learning techniques for division of instances into homogenous group, which is called cluster. This Clustering is mainly used for generating a good quality of cluster through which we can discover hidden patterns and knowledge from the large datasets. It has huge application in different field like in medicine field, healthcare, gene-expression, image processing, agriculture, fraud detection, profitability analysis etc. The goal of this paper is to explore both hierarchical as well as partitioning clustering and understanding their problem with various approaches for their solution. Among different clustering K-means is better than other clustering due to its linear time complexity. Further this paper also focused on data mining that dealing with high-dimensional datasets with their problems and their existing approaches for their relevancy

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • 제30권1호
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.

인공지능 기술의 통합보안관제 적용 및 사이버침해대응 절차 개선 (Application of Integrated Security Control of Artificial Intelligence Technology and Improvement of Cyber-Threat Response Process )

  • 고광수;조인준
    • 한국콘텐츠학회논문지
    • /
    • 제21권10호
    • /
    • pp.59-66
    • /
    • 2021
  • 본 논문에서는 통합보안관제에 인공지능 기술을 적용하고, 기존 보안관제와 인공지능 보안관제의 대응절차를 일원화한, 개선된 통합보안관제 절차를 새롭게 제안하였다. 현재의 사이버보안관제는 사람의 능력 수준에 의존도가 매우 높다. 그래서 사람에 의해 여러 이기종 장비에서 발생하는 다양한 로그를 분석하고, 급증하는 보안이벤트를 모두 분석·처리한다는 것은 사실상 무리가 있다. 그리고 문자열과 패턴 일치로 탐지하는 시그니처 기반의 보안장비는 APT(Advanced Persistent Threat)와 같은 고도화·지능화된 사이버공격을 정확히 탐지하기에 기능상 부족한 면이 있다. 이러한 문제들을 해결하기 위한 방안으로 인공지능 지도·비지도학습 기술을 사이버공격 탐지 및 분석에 적용하고, 이를 통해 수 없이 많이 발생하는 로그와 이벤트의 분석을 자동화하여, 고도화된 사이버공격의 지속적인 발생을 예측·차단할 수 있도록 하여 전반적인 측면에서 대응수준을 높였다. 그리고 보안관제에 인공지능 기술을 적용한 후 AI와 SIEM의 중복 탐지 등의 문제점을 일원화 된 침해대응 프로세스(절차)로 통합·해결함으로써 개선된 통합보안관제 서비스 모델을 새롭게 제안하였다.

명암도 변화 및 HSI 정보와 개선된 ART2 알고리즘을 이용한 차량 번호판 인식 (Recognition of Car Plate using Gray Brightness Variation, HSI Information and Enhanced ART2 Algorithm)

  • 김광백;김영주
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.379-387
    • /
    • 2001
  • 본 논문은 그레이 명암도 변화와 HSl 컬러 모형의 Hue 정보를 함께 이용한 번호판 영역 추출 방법을 제안한다. 차량 이미지에서 차량 번호판 추출은 명암도 변화를 이용하여 번호판 후보 영역을 추출하고 후보 영역에 대해 HSI 컬러 모형의 Hue 정보를 이용하여 실제 번호판 영역을 결정한다. 추출된 번호판 영역으로부터 문자를 포함하는 특징 영역 추출은 각 문자들에 대한 히스토그램을 이용하여 추출한다. 그리고 Yager의 합접속 연산자를 이용하여 경계 변수 값을 동적으로 변화시키는 개선된 ART2 알고리즘을 제안하고 번호판의 개별 문자 인식에 적용한다. 또한 개선된 ART2와 지도 학습 방법을 통합한 SOSL 알고리즘을 제안한다. 100개의 실제 차량 이미지를 이용한 실험 결과를 통해 제안된 번호판 영역 추출 방법이 단일 컬러 모형을 적용한 기존 추출 방법보다 추출률이 향상되었고, 개선된 알고리즘들이 기존의 ART2 알고리즘과 오류 역전파 알고리즘 보다 더 높은 인식률을 보임을 알 수 있었다.

  • PDF