• Title/Summary/Keyword: Supersonic aerodynamic

Search Result 153, Processing Time 0.018 seconds

Experimental Study Of Supersonic Coanda Jet

  • Kim, Heuydong;Chaemin Im;Sunhoon, Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.33-33
    • /
    • 1999
  • The Coanda effect is the tendency for a fluid jet to atach itself to an adjacent surface and follow its contour without causing an appreciable flow separation. The jet is pulled onto the surface by the low pressure region which develops as entrainment pumps fluid from the region between the jet and the surface. Then the jet is held to the wall surface by the resulting radial pressure gradient which balance the inertial resistance of the jet to turning. The jet may attach to the surface and may be deflected through more than 180 dog, when the radius of the Coanda surface is sufficiently large compared to the height of the exhaust nozzle. However, if the radius of curvature is small, the jet turns through a smaller angle, or may not attach to the surface at all. In general, the limitations in size and weight of a device will limit the radius of the deflection surface. Thus much effort has been paid to improve the jet deflection in a variety of engineering fields. The Coanda effect has long been applied to improve aerodynamic characteristics, such as the drag/lift ratio of flight body, the engine exhaust plume thrust vectoring, and the aerofoil/wing circulation control. During the energy crisis of the seventies, the Coanda jet was applied to reduce vehicle drag and led to drag reductions of as much as about 30% for a trailer configuration. Recently a variety of industrial applications are exploiting another characteristics of the Coanda jets, mainly the enhanced turbulence levels and entrainment compared with conventional jet flows. Various industrial burners and combustors are based upon this principle. If the curvature of the Coanda surface is too great or the operating pressure too high, the jet flow will break away completely from the surface. This could have catastrophic consequences for a burner or combustor. Detailed understanding of the Coanda jet flow is essential to refine the design to maximize the enhanced entrainment in these applications.

  • PDF

Starting Characteristics Study of Scramjet Engine Test Facility(SETF) (스크램제트 엔진 시험설비의 시동특성 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.451-458
    • /
    • 2010
  • Unlike most aerodynamic wind-tunnel, Scramjet Engine Test Facility(SETF) of Korea Aerospace Research Institute should simulate enthalpy condition at a flight condition. SETF is a blow-down type, high-enthalpy wind tunnel. To attain a flight condition, a highly stagnated air comes into the test cell through a supersonic nozzle. Also, an air ejector of the SETF is used for simulating altitude conditions of the engine, and facility starting. SETF has a free-jet type test cell and this free-jet type test cell can simulate a boundary layer effect between an airplane and engine using facility nozzle, but it is too difficult to predict the nature of the facility. Therefore it is required to understand the starting characteristics of the facility by experiments. In this paper, the starting characteristics of the SETF and modifications of the ejector are described.

  • PDF

Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude (중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석)

  • Choi, Kyungjun;Lee, Seonguk;Oh, Kwangseok;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.986-993
    • /
    • 2018
  • Lateral thrust jet has better maneuverability performance than the control surface like the conventional fin for attitude control or orbital transition of guided weapons. However, in the supersonic region, a jet interaction flow occurs due to the lateral thrust jet during flight, and a complicated flow structure is exhibited by the interaction of the shock wave, boundary layer flow, and the vortex flow. Especially, hit-to-kill interceptors require precise control and maneuvering, so it is necessary to analyze the effect of jet interaction flow. Conventional jet interaction analyses were performed under low altitude conditions, but there are not many cases in the case of medium altitude condition, which has different flow characteristics. In this study, jet interaction flow analysis is performed on the lateral jet controlled interceptor operating at medium altitude. Based on the results, the structural characteristics of the flow field and the changes of aerodynamic coefficient are analyzed.