• Title/Summary/Keyword: Supersonic Separation

Search Result 107, Processing Time 0.024 seconds

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Control of the Asymmetric Flow in a Supersonic Nozzle (초음속 노즐에서 발생하는 비대칭 유동의 제어에 관한 연구)

  • Matsuo, Shigeru;Setoguchi, Toshiaki;Hashimoto, Tokitada;Tokuda, Seiya;Nagao, Junji;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.61-65
    • /
    • 2011
  • Several previous works on rocket nozzle flows have revealed the existence of the transition from FSS to RSS and the occurrence of asymmetric flow associated with the boundary layer separation, which can cause excessive side-loads of the propulsion system. Thus, it is of practical importance to investigate the asymmetric flow behaviors of the propulsion nozzle and to develop its control method. In the present study, the asymmetric flow control method using a cavity system was applied to supersonic nozzle flow. Time-dependent asymmetric flow was experimentally investigated with the rate of change of the nozzle pressure ratio. The results obtained showed that the cavity system installed on nozzle wall would be helpful in fixing the unsteady motions of the boundary layer separation, consequently reducing the possibility of the occurrence of the asymmetric flow.

Study of Characteristics of Assist Gas in Laser Machining Using Flow Visualization Techniques (유동가시화 기법을 이용한 레이저가공의 보조가스 충돌특성에 관한 연구)

  • Son, Sang-Hyuk;Lee, Yeol;Min, Seong-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • The characteristics of supersonic coaxial/off-axis jet impingements on a slanted kerf surface were experimentally studied, to investigate the role of the assist gas that removes molten materials from cut zone formed by laser machining. In this parametric study, hundreds of high-resolution schlieren images were obtained for various gas pressures, distances between nozzle exit and kerf surface, kerf widths, and alignments of off-axis nozzle. It was noticed that simply increasing the assist gas pressure was not effective in eliminating the flow separation that occurs downstream of the kerf surface. However, it was also observed that by increasing the kerf width and utilizing off-axis nozzles, the separation of the assist gas on the kerf surface can be weakened. The effect of the distance between the nozzle exit and the kerf surface on the characteristics of separation occurring on the kerf surface was found to be lower in the case of supersonic nozzles than that in the case of sonic nozzles.

NUMERICAL INVESTIGATION OF PLUME-INDUCED FLOW SEPARATION FOR A SPACE LAUNCH VEHICLE (우주발사체의 플룸에 따른 유동박리 현상에 대한 수치적 연구)

  • Ahn, S.J.;Hur, N.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • In this paper, the supersonic flows around space launch vehicles have been numerically simulated by using a 3-D RANS flow solver. The focus of the study was made for investigating plume-induced flow separation(PIFS). For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras model was employed for the closure of turbulence. The Gauss-Seidel iteration was used for time integration. To validate the flow solver, calculation was made for the 0.04 scale model of the Saturn-5 launch vehicle at the supersonic flow condition without exhaust plume, and the predicted results were compared with the experimental data. Good agreements were obtained between the present results and the experiment for the surface pressure coefficient and the Mach number distribution inside the boundary layer. Additional calculations were made for the real scale of the Saturn-5 configuration with exhaust plume. The flow characteristics were analyzed, and the PIFS distances were validated by comparing with the flight data. The KSLV-1 is also simulated at the several altitude conditions. In case of the KSLV-1, PIFS was not observed at all conditions, and it is expected that PIFS is affected by the nozzle position.

AERODYNAMIC SHAPE OPTIMIZATION OF THE SUPERSONIC IMPULSE TURBINE USING CFD AND GENETIC ALGORITHM (CFD와 유전알고리즘을 이용한 초음속 충동형 터빈의 공력형상 최적화)

  • Lee E.S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.54-59
    • /
    • 2005
  • For the improvement of aerodynamic performance of the turbine blade in a turbopump for the liquid rocket engine, the optimization of turbine profile shape has been studied. The turbine in a turbopump in this study is a partial admission of impulse type, which has twelve nozzles and supersonic inflow. Due to the separated nozzles and supersonic expansion, the flow field becomes complicate and shows oblique shocks and flow separation. To increase the blade power, redesign ol the blade shape using CFD and optimization methods was attempted. The turbine cascade shape was represented by four design parameters. For optimization, a genetic algorithm based upon non-gradient search hue been selected as an optimizer. As a result, the final blade has about 4 percent more blade power than the initial shape.

COMPARATIVE STUDY ON TURBULENCE MODELS FOR SUPERSONIC FLOW AT HIGH ANGLE OF ATTACK (초음속 고받음각 유동을 위한 난류 모델 비교 연구)

  • Park, M.Y.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.45-49
    • /
    • 2007
  • Asymmetric force and vibration caused by separation flow at high angle of attack affect the stability of supersonic missile. As a preliminary study we verified the effect of turbulence model through general 3-D slender body for the supersonic flow at high angle of attack. ${\kappa}-{\omega}$ Wilcox model, ${\kappa}-{\omega}$ Wilcox-Durbin+ model, ${\kappa}-{\omega}$ shear-stress transport model, and Spalart-Allmaras one equation model are used. Grid sensitivity test was performed with three different grid system. results show that all models are in good agreement with the experimental data.

  • PDF

A Study on Transient Characteristics of Flow Caused by Heat Addition in Supersonic Nozzle (초음속 노즐 내부 유동장의 가열에 의한 천이 특성에 대한 연구)

  • Chung, Jin-Do;Kim, Jang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.80-86
    • /
    • 2005
  • This study presents numerical solutions of the two-dimensional Navier-Stokes equations for supersonic unsteady flow in a convergent-divergent nozzle with heat addition. The TVD scheme in generalized coordinates is employed in order to calculate the moving shock waves caused by thermal choking. We discuss on transient characteristics, start and unstart phenomena, fluctuations of specific thrust caused by thermal choking and viscous effects. We prove that the control of separation of boundary layer is the most important key problem to prevent the thermal choking.

Computational Study of Impingement Characteristics of Assist Gas from Coaxial/Off-axis Nozzles in Laser Machining (레이저 가공에서 동축/탈축 보조가스의 충돌특성에 관한 수치해석적 연구)

  • Yoon, Shi-Kyung;Sung, Hong-Gye;Lee, Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.14-19
    • /
    • 2010
  • A computational study was carried out to analyze the characteristics of supersonic (Mach 2.0) coaxial/off-axis jet's impingements on a slanted kerf surface in laser machining. The effects of various parameters such as gas pressure, distance between nozzle exit and kerf edge surface, and application of off-axis nozzles on the impingement phenomena of the assist-gas on kerf surface were observed. The present study showed that simply increasing the assist-gas pressure for coaxial supersonic nozzle was not effective to alleviate the strength of flow separation on kerf surface. It also presented the optimized operating condition of the coaxial nozzle to have the highest skin friction values over kerf surface.

The Interaction Between Modules Caused by Thermal Choking in a Supersonic Duct (덕트내 초음속 유동에서 열폐색에 의한 모듈 간의 간섭)

  • Kim, Jang-Woo;Koo, Kyung-Wan;Han, Chang-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.109-115
    • /
    • 2007
  • Airframe-integrated Scramjet engines of NASA Langley type consist of a compressor, a combustion chamber and a nozzle. When some disturbances occur in one module of the engine, its influences are propagated to other modules. In this study, it is investigated numerically how shock waves were caused by thermal choking in one module propagate upstream and how they influence adjacent modules. The calculations are carried out in 2-dimensional supersonic viscous flow model using explicit TVD scheme in generalized coordinates. The adverse pressure gradient caused by heat addition brings about separation of the wall boundary layers and formation of the oblique shock wave that proceed to upstream. This moving shock wave formed one module blocks the flow coming into the adjacent modules, which makes the modules unstarted.

Study of The Air Jet Normally Injected into Supersonic Stream (초음속 자유유동에 수직으로 분사되는 제트유동장에 관한 연구)

  • 구병수;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.42-49
    • /
    • 2000
  • A computation using the mass-averaged implicit Wavier-Stokes equations has been applied to solve the flow fields of the supersonic jets normally injected into supersonic freestreams and several types of turbulence model has been employed to close the governing equations. The ratio of the freestream to injection flow total pressures has been varied to elucidate the major characteristics of the mixing flow of the two streams. The freestream Mach number has been varied to investigate some change in the injection flow field. The results show that the positions of the separation and reattachment, locating upstream and downstream of the injection hole respectively, are strongly dependent on the ratio of total pressures and the freestream Mach number.

  • PDF