• Title/Summary/Keyword: Supersonic Nozzle Flow

Search Result 304, Processing Time 0.027 seconds

Passive control of condensation shock wave in supersonic nozzles (초음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Gwon, Sun-Beom;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3980-3990
    • /
    • 1996
  • When a moist air is rapidly expanded in a supersonic nozzle, nonequilibrium condensation occurs at a supersaturation state. Condensation shock wave appears in the nozzle flow if the releasing latent heat due to condensation goes beyond a critical value. It has been known that self-excited oscillations of the condensation shock wave generate in an air or a steam nozzle flow with a large humidity. In the present study, the passive control technique using porous wall with a cavity underneath was applied to the condensation shock wave. The effects of the passive control on the steady and self-excited condensation shock waves were experimentally investigated by Schlieren visualization and static pressure measurements. The result shows that the present passive control is a useful technique to suppress the self-excited oscillations of condensation shock wave.

Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle (음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구)

  • Ko, Hyun;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.45-52
    • /
    • 2003
  • Detailed flowfield resulting from the secondary sonic gas injection into a divergent section of supersonic conical nozzle has been numerically investigated. The three-dimensional flowfield associated with the bow-shock/boundary-layer interaction inside the nozzle has been solved by Reynolds-averaged Navier-Stokes equations with an algebraic and $\kappa$-$\varepsilon$ turbulence model. The numerical results have been compared with the experimental results for the identical flow conditions, and it is shown that the comparison is satisfactory Effects of different injection pressures of the secondary jet on the shock/boundary-layer interactions and the overall flow structure inside the nozzle have been investigated. The vortex structures behind the shock interaction and wall pressure variations have also been studied.

Numerical and experimental investigation of non-stationary processes in the supersonic gas ejector

  • Tsipenko, Anton;Kartovitskiy, Lev;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.469-473
    • /
    • 2009
  • The supersonic gas ejector, as gas dynamic appliance, has been applied for a long time because of simplicity and reliability. However, for the prediction of ejector performances with given parameters, that is, working gas pressure and the nozzle shape, it is necessary to raise accuracy of modelling for properties of ejector gas flow. The purpose of the represented work is to compare one-dimensional modelling and numerical results with experimental results. The ejector with a conic nozzle has been designed and tested (Mach number at the nozzle exit section was 3.31, the nozzle throat diameter - 6 mm). Working gas - nitrogen, was brought from system of gas bottles. Diameter of the mixture chamber at the nozzle exit section was limited by condensation temperature of nitrogen and equaled 20 mm. The one-dimensional theory predicted the minimal starting pressure equaled 8.18 bar (absolute) and 0.051 bar in the vacuum chamber. Accordingly the minimal starting pressure was 9.055 bar and 0.057 in the vacuum chamber bar have been fixed in experiment.

  • PDF

Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics) (초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성))

  • Hong, Jong-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

A study on internal flow field of supersonic nozzle by needle type pintle position (Needle형 Pintle의 위치에 따른 초음속 노즐 내부 유동장 연구)

  • Lee, Ji-Hyung;Kim, Jung-Keun;Chang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.269-272
    • /
    • 2008
  • Internal flow field of supersonic nozzle with pintle, which control thrust of solid rocket motor, is very complicated by pintle tip shape and contour of nozzle. For studying of pintle nozzle performance by effects of internal flow field variation with pintle position, cold flow test and numerical analysis about needle type pintle shape were performed and results were presented in this paper. As the results of this study, three types of internal shocks exists in the pintle nozzle and oblique shock is oscillated by pintle position

  • PDF

Assessment and Validation of Turbulence Models for the Optimal Computation of Supersonic Nozzle Flow (초음속 노즐 유동의 최적해석을 위한 난류모델의 평가와 선정)

  • Kam, Ho Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • Assessment and validation of RANS turbulence models are conducted for the optimal analysis of supersonic converging-diverging nozzle through the comparison between computational results and experimental data. One/two equation turbulence closures such as Spalart-Allmaras, RNG k-${\varepsilon}$, and k-${\omega}$ SST are employed to simulate the two-dimensional nozzle flow. Computational results with the turbulence models mentioned fairly well predict shock structure of the nozzle-inside and pressure distribution along the wall. Especially, SST model among the employed ones shows the best agreement to experimental results.

An Experimental Study of the Variable Sonic/supersonic Ejector Systems (가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구)

  • Lee Jun Hee;Kim Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.554-560
    • /
    • 2005
  • A new method to improve the efficiency of a hydrogen fuel cell system was introduced by using variable sonic/supersonic ejectors. To obtain the variable area ratio of the nozzle throat to ejector throat which controls the mass flow rate of the suction flow, the ejectors used a movable cylinder inserted into a conventional ejector-diffuser system. Experiments were carried out to understand the flow characteristics inside the variable ejector system. The secondary mass flow rates of subsonic and supersonic ejectors were examined by varying the operating pressure ratio and area ratio. The results showed that the variable sonic/supersonic ejectors could control the recirculation ratio by changing the throat area ratio, and also showed that the recirculation ratio increased fur the variable sonic ejector and decreased for the variable supersonic ejector, as the throat area ratio increases.

Numerical Visualization of Supersonic Microjet Flows (초음속 마이크로제트 유동의 수치해석적 가시화)

  • Shin, Choon-Sik;Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 2010
  • Supersonic microjets acquire considerable research interest from a fundamental fluid dynamics perspective, in part because the combination of highly compressible flow at low-to-moderate Reynolds number is not very common, and in part due to the complex nature of the flow itself. In addition, microjets have a great variety engineering applications such as micro-propulsion, MEMS(Micro-Electro Mechanical Systems) components, microjet actuators and fine particle deposition and removal. Numerical simulations have been carried out at moderate nozzle pressure ratios and for different nozzle exit diameters to investigate and to understand in-depth of aerodynamic characteristics of supersonic microjets.

The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets (환형동축 초음속 자유 제트유동에 관한 실험적 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.323-328
    • /
    • 2001
  • Supersonic coaxial, axisymmetric, jets issuing from various kinds of dual coaxial nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with an impinging angle in the jet axis of the annular jets were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio produces longer supersonic length of the dual, coaxial jet.

  • PDF

A Study on the Supersonic Flow Characteristics Through a Dual Throat Nozzle (이중목 노즐에서 발생하는 초음속유동 특성에 관한 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze a fundamental performance of a dual throat nozzle(DTN) at various nozzle pressure ratios(NPR) and throat area ratios. Two-dimensional, axisymmetric, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. NPR was varied in the range of NPR from 2.0 to 10.0, at different throat area ratios. The present computational results were validated with some experimental data available. Based upon the present results, the performance of DTN is discussed in terms of the discharge coefficient and thrust efficiency.