• Title/Summary/Keyword: Superlattice

Search Result 175, Processing Time 0.027 seconds

Active Optical Logic Devices Using Surface-emitting Microlasers (표면광 마이크로 레이저를 이용한 능동형 광 논리 소자의 동작 특성)

  • 유지영
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.294-300
    • /
    • 1993
  • Monolithic NOR and INVERTER active optical logic devices inte- grated with surface-emitting microlasers, heterojunction photo- transistors(HPT) in parallel and resistors in series are characterized. The differential quantum efficiency of the typical AlGaAs superlattice microlaser integrated in the active optical logic devices is 15%. Current gain of the HPT is 57, when emitter-collector voltage and input optical power are 4 V and $50{\mu}W$, respectively. $57{\mu}W$ of output power from the active optical logic device decreases to zero when $47{\mu}W$ of input optical power is incident on the HPT part of the active logic device.

  • PDF

Nanophotonics of Hexagonal Lattice GaN Crystals Fabricated using an Electron Beam Nanolithography Process

  • Lee, In-Goo;Kim, Keun-Joo;Jeon, Sang-Cheol;Kim, Jin-Soo;Lee, Hee-Mok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.14-17
    • /
    • 2006
  • A thin GaN semiconducting film that grows on sapphires due to metalorganic chemical vapor deposition was machined for nanophotonic applications. The thin film had multilayered superlattice structures, including nanoscaled InGaN layers. Eight alternating InGaN/GaN multilayers provided a blue light emission source. Nanoscaled holes, 150 nm in diameter, were patterned on polymethylmethacrylate (PMMA) film using an electron beam lithography system. The PMMA film blocked the etching species. Air holes, 75 nm in diameter, which acted as blue light diffraction sources, were etched on the top GaN layer by an inductively coupled plasma etcher. Hexagonal lattice photonic crystals were fabricated with 230-, 460-, 690-, and 920-nm pitches. The 450-nm wavelength blue light provided the nanodiffraction destructive and constructive interferences phenomena, which were dependent on the pitch of the holes.

Exponent Study of the p($2{\times}1$) Phase on an O/W(110) Surface (O/W(110) 표면의 p($2{\times}1$) 구조의 임계지수 연구)

  • 백두현;정석민;정진욱
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.88-95
    • /
    • 1992
  • Abstract-Using a high resolution low energy electron diffraction(HRLEED), we report an exponent study of 2d continuous phase transition from an ordered ~ ( 2 x 1 )ox ygen overlayer on a W(110) surface. Temperature dependence of a (% 0) superlattice diffraction spot, characteristic of the p(2X 1) structure, shows power-law like divergence of the susceptibility and the fluctuation correlation length at T,=708.765 K. By fitting the intensities as well as the line-shapes, we obtained exponents P=0.19* 0.05, y=1.48+ 0.34, v= 1.23i 0.27 and q=0.38+ 0.12. The non-universal character of the exponents are understood in terms of a 2d XY model with cubic anisotropy as suggested previously.

  • PDF

Structural Control and Two-Dimensional Order of Organic Thiol Self-Assembled Monolayers on Au(111)

  • No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.26-26
    • /
    • 2011
  • Self-assembled monolayers (SAMs) prepared by sulfur-containing organic molecules on metal surfaces have drawn much attention for more than two decades because of their technological applications in wetting, chemical and biosensors, molecular recognition, nanolithography, and molecular electronics. In this talk, we will present self-assembly mechanism and two-dimensional (2D) structures of various organic thiol SAMs on Au(111), which are mainly demonstrated by molecular-scale scanning tunneling microscopy (STM) observation. In addition, we will provide some idea how to control 2D molecular arrangements of organic SAMs. For instance, the formation and surface structure of pentafluorobenzenethiols (PFBT) self-assembled monolayers (SAMs) on Au(111) formed from various experimental conditions were examined by means of STM. Although it is well known that PFBT molecules on metal surfaces do not form ordered SAMs, we clearly revealed for the first time that adsorption of PFBT on Au(111) at $75^{\circ}C$ for 2 h yields long-range, well-ordered self-assembled monolayers having a $(2{\times}5\sqrt{13})R30^{\circ}$ superlattice. Benzenethiols (BT) SAMs on gold usually have disordered phases, however, we have clearly demonstrated that the displacement of preadsorbed cyclohexanethiol self-assembled monolayers (SAMs) on Au(111) by BT molecules can be a successful approach to obtain BT SAMs with long-range ordered domains. Our results will provide new insight into controlling the structural order of BT or PFBT SAMs, which will be very useful in precisely tailoring the interface properties of metal surfaces in electronic devices.

  • PDF

Physical Properties of $Ba_{1-x}Sr_x(Mg{1/3}Nb_{2/3})O_3$Ceramics ($Ba_{1-x}Sr_x(Mg{1/3}Nb_{2/3})O_3$ 세라믹스의 물리적 특성)

  • 김부근;김재윤;김강언;정수태;조상희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.325-328
    • /
    • 1999
  • The physical and electrical properties of $\textrm{Ba}_1$ $_{x}\textrm{Sr}_{x}$($\textrm{Mg_{1/3}Nb_{2/3}}$)$\textrm{O}_3$ (x =0, 0.2, 0.4, 0.6, 0.8, 1.0) ceramics were investigated. The Bal $_{x}\textrm{Sr}_{x}$($\textrm{Mg_{1/3}Nb_{2/3}}$)$\textrm{O}_3$ systems were shown that the hexagonally ordered superlattices were increased with increasing x values. The relative densities of all samples were over 97% theoretical densities. The dc resistivities of samples were $10^{13}$ - $10^{14}$$\Omega\textrm{cm}$at room temperature, these values were nearly constant at 130(x=0)-$230^{\circ}C$ (x=l). However, the resistivities of samples decreased rapidly above those temperature and their activation energies were from 1.0 to 1.52 eV. The relative dielectric constant was 33(BMN) and 30.6(SMN) respectively. And the highest value was shown at x=0.4 and the value was 34.3. The temperature coefficient of dielectric constant was -61 ppm/$^{\circ}C$(BMN) and 79 ppm/$^{\circ}C$ (SMN) respectively.

  • PDF

The Structural and Microwave Properties of Ba($Mg_{1/3}Ta_{2/3})O_3$-Ba($Co_{1/3}Nb_{2/3})O_3$[BMT-BCN] (조성비에 따른 Ba($Mg_{1/3}Ta_{2/3})O_{3}$-Ba($Co_{1/3}Nb_{2/3})O_3$[BMT-BCN] 세라믹스의 구조 및 마이크로파 유전특성)

  • Hwang, Tae-Kwang;Park, In-Gill;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1664-1666
    • /
    • 2000
  • The structural and microwave properties of Ba($Mg_{1/3}Ta_{2/3})O_3$-Ba($Co_{1/3}Nb_{2/3})O_3$ ceramics were investigated with composition ratio. The specimens were sintered at 1525$^{\circ}C$ for 5 hours in air. All specimens exhibited superlattice reflection planes of (100), (111), (200), (201), and (112). Increasing mole ratio of BCN ceramics, the peak intensity of superstructure reflection plane were decreased, while dielectric constant was slightly increased. The dielectric constant and quality factor of the 0.8BMT-0.2BCN ceramics were 27.51, 103,681 [at 1GHz], respectively.

  • PDF

The Fabrication of (Ga, Al) As/GaAs Modified Multi-Quantum Well Laser Diode by MOCVD (MOCVD법에 의한 (Ga, Al) As/GaAs 변형된 영지우물 레이저 다이오드의 제작)

  • Kim, Chung-Jin;Kang, Myung-Ku;Kim, Yong;Eom, Kyung-Sook;Min, Suk-Ki;Oh, Hwan-Sool
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.9
    • /
    • pp.36-45
    • /
    • 1992
  • The Modified Multi-Quantum Well(MMQWAl) structures have been grown by Mental-Organic chemical Vapor Deposition(MOCVD) method and stripe type MMQW laser diodes have been investigated. In the case of GaAs/AlGaAs superlattice and quantum well growth by MOCVD, the periodicity, interface abruptess, Al compositional uniformity and layer thickness have been confirmed though the shallow angle lapping technique, double crystal x-ray diffractometry (DCXD) and photoluminescence (PL) measurement. stripe-type MMQW laser diodes have been fabricated using the process technology of photolithography, chemical etching, ohmic contact, back side removing and cleaving. As the result of the electrical and opticalmeasurement of these laser diodes, we have achieved the series resistance of $1[\Omega}~2{\Omega}$ by current-voltage measurements, the threshold current of 200-300mA by currnt-light measurements and the lasing wavelength of 8000-8400$\AA$ by lasing spectrum measurements.

  • PDF

Phase Transition adn Crystal Structure Analysis Using Rietveld Method in the $(Na_{0.3}Sr_{0.7})(Ti_{0.7}M_{0.3})O_3 (M=Ta, Nb)$ System (Rietveld 법을 이용한 $(Na_{0.3}Sr_{0.7})(Ti_{0.7}M_{0.3})O_3 (M=Ta, Nb)$ 계에서의 결정구조 해석과 상전이 특성)

  • 정훈택;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.582-586
    • /
    • 1995
  • The crystal structures of (Na0.3Sr0.7)(Ti0.7M0.3)O3 (M=Ta, Nb) compounds were determined using the Rietveld method. Due to the tilting of a oxygen octahedron, (Na0.3Sr0.7)(Ti0.7Nb0.3)O3 had a superlattice of doubled a, b and c of simple perovskite. The crystal structure of (Na0.3Sr0.7)(Ti0.7M0.3)O3 was tetragonal with a space group 14/mmm. The crystal structure of (Na0.3Sr0.7)(Ti0.7M0.3)O3 was a cubic with space group Pm3m, in which no tilting of oxygen octahedron was observed. The difference in the oxygen tilting of these two materials was due to the larger covalency of Nb-O bond than that of Ta-O bond, which induced a strong $\pi$Nb0 bonding in (Na0.3Sr0.7)(Ti0.7M0.3)O3. Therefore, the higher transition temperature of (Na0.3Sr0.7)(Ti0.7M0.3)O3 could be related to the larger tilting of oxygen octahedron.

  • PDF

Metal-to-Insulator Transitions in La2/3Sr1/3MnO3/LaMnO3 (LSMO/LMO) Superlattices

  • Ryu, Sang-Woo;Jang, Hyun-M.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.734-737
    • /
    • 2006
  • A series of manganite-based superlattices composed of half-metallic $La_{2/3}Sr_{1/3}MnO_3/LaMnO_3$ and insulating LaMnO$_3$ stacking layers were fabricated by employing pulsed laser deposition method. The dc resistivity increased drastically by simply reducing the stacking periodicity. The resistivity enhancement was accompanied by a gradual decrease in the temperature (T$_c$) of the Metal-to-Insulator Transition (MIT). This observation was interpreted as a small decrease in the effective metallic fraction near the percolation threshold. For the stacking periodicity less than a certain critical value, there appeared another transition to an insulating state at temperatures far below T$_c$. This low-temperature transition seems to be closely related to the AF-type (C-type) orbital ordering in newly formed insulating domains.

Reconstruction of Vacancy Defects in Graphene and Carbon Nanotube

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon;Wang, Cai-Zhuang;Ho, Kai-Ming
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.340-340
    • /
    • 2010
  • Various structures of vacancy defects in graphene layers and carbon nanotubes have been reported by high resolution transmission electron microscope (HR-TEM) and those arouse an interest of reconstruction processes of vacancy defects. In this talk, we present reconstruction processes of vacancy defects in a graphene and a carbon nanotube by tight-binding molecular dynamics (TBMD) simulations and by first principles total energy calculations. We found that a structure of a dislocation defect with two pentagon-heptagon (5-7) pairs in graphene becomes more stable than other structures when the number of vacancy units is ten and over. The simulation study of scanning tunneling microscopy reveals that the pentagon-heptagon pair defects perturb the wavefunction of electrons near Fermi level to produce the $\sqrt{3}\;{\times}\;\sqrt{3}$ superlattice pattern, which is in excellent agreement with experiment. It is also observed in our tight-binding molecular dynamics simulation that 5-7 pair defects play a very important role in vacancy reconstruction in a graphene layer and carbon nanotubes.

  • PDF