• Title/Summary/Keyword: Superhydrophobic Surface

Search Result 113, Processing Time 0.024 seconds

A Multifunctional Surface Fabricated by Polydimethylsiloxane Coated Multi-walled Carbon Nanotubes

  • Yoon, Hye Soo;Kim, Kwang-Dae;Jeong, Myung-Geun;Kim, Dae Han;Park, Eun Ji;Jeong, Bora;Cho, Youn Kyoung;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.167.1-167.1
    • /
    • 2014
  • We report a facile method to fabricate superhydrophobic, transparent and conductive film using multi-walled carbon nanotubes (MWCNTs) which are coated by polydimethylsiloxane (PDMS). In order to prepare a film, PDMS coated MWCNTs were dispersed in solvents and the solution was drop-casted on substrates. It was demonstrated that the PDMS coating enhanced the dispersion of MWCNTs in diverse solvents such as dimethyl formamide(DMF) and acetone without the use of acids or surfactants, which are the common methods. In the case of DMF solvent, dispersion of MWCNT was improved by 40 % upon PDMS-coating of MWCNT. Enhanced dispersion of MWCNTs made it possible to fabricate transparent and conductive film homogeneously on the substrate and PDMS-coating on MWCNTs also made the surface hydrophobic. We can fabricate a uniform and multifunctional MWCNT film (transparent, conductive, superhydrophobic and flexible) which is applicable on large area without any physical damage and expensive equipment.

  • PDF

Fabrication of Superhydrophobic TiO2 Films without Color Alternation (색 변화 없는 초소수성 타이타늄 산화막 제조)

  • Kim, Seon-Gyu;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.339-339
    • /
    • 2015
  • 타이타늄을 2단계로 양극산화하여 색을 유지하며 표면에 튜브형태를 갖는 산화막을 제조하였다. 타이타늄을 양극산화 시, 전해질 농도, 양극산화 전압, 시간 등에 따라 다양한 색을 띄게 되는데, 기름기 등의 오염물질로 인한 색 변화, 내 지문성 등의 문제가 유발된다. 이에 타이타늄을 양극산화하여 나노튜브를 성장시킨 후, 기존 산화막 제조와 같은 조건으로 다시 양극산화하였다. 그 결과 기존 barrier 형태의 산화막 색이 구현되면서, 표면의 돌기형태에 따른 접촉각이 변화하게 되었다.

  • PDF

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.

Surface modification of materials by thermal plasma (열플라즈마를 이용한 재료의 표면개질)

  • Kang, Seong-Pyo;Lee, Han Jun;Kim, Tae-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.308-318
    • /
    • 2022
  • The surface modification and treatment using thermal plasma were reviewed in academic fields. In general, thermal plasma is generated by direct current (DC) and radiofrequency (RF) power sources. Thermal spray coating, a typical commercial process using thermal plasma, is performed by DC thermal plasma, whereas other promising surface modifications have been reported and developed using RF thermal plasma. Beyond the thermal spray coating, physical and chemical surface modifications were attempted widely. Superhydrophobic surface treatment has a very high industrial demand particularly. Besides, RF thermal plasma system for large-area film surface treatment is being developed. Thermal plasma is especially suitable for the surface modification of low-dimensional nanomaterial (e.g., nanotubes) by utilizing high temperature and rapid quenching. It is able to synthesize and modify nanomaterials simultaneously in a one-pot process.

Development of Electrospray Micro Thruster with Super-Hydrophobic PTFE Surface Nozzle Treated by Ar and Oxygen Ion Beam

  • Lee, Y.J.;Byun, D.Y.;Si, Bui Quang Tran;Kim, S.H.;Park, B.H.;Yu, M.J.;Kim, M.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.877-880
    • /
    • 2008
  • In this article, in order to fabricate polymer based electrospray device with super hydrophobic nozzle we use PTFE(polyfluorotetraethylene) plate and PMMA(polymethylmethacrylate). To obtain the super hydrophobic surface nozzle, PTFE surface is treated by argon and oxygen plasma treatment process. And evaluate the treated surface, perform measuring contact angle, SEM(Scanning Electron Microscope) and AFM(Atomic Force Microscope). We compare the performance of the super hydrophobic PTFE surface nozzle with raw PTFE and PMMA surface nozzle. For the ion beam treated PTFE nozzle, the liquid doesn't overflow and it keeps initial position and meniscus shape. From these results, we expect in cease of superhydrophobic surface nozzle jetting becomes more stable and repeatable.

  • PDF

Preparation of Superhydrophobic Surfaces Using Agglomeration Control of Silica Nanoparticles by Organic Solvent and Non-fluoride Self-assembled Monolayers (유기용매에 의한 실리카 나노입자의 응집조절과 비불소계 자기조립박막을 이용한 초발수 표면 제조)

  • Kim, Taeyoon;Jeong, Jin;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.116-121
    • /
    • 2015
  • In this study, octadecyltrichlorosilane (OTS) has been used to replace fluoro-silanes which are much more expensive than OTS. In order to improve the mechanical and adhesive properties of coating layers, inorganic binders were separately synthesized based on sol-gel reaction in acidic condition. Since the synthesized silica nanoparticles gave only nano-scaled roughness, superhydrophobicity is not well obtained. Here, we present a new simple approach by intentionally inducing particle aggregation in the solution which is controlled by adjusting solvent amount. With selecting suitable sizes of silica nanoparticles, superhydrophobic surfaces were obtained with increasing the amount of organic solvents after surface hydrophobization using OTS, and an extremely water-repellent behavior was observed with zero sliding angle. This superhydrophobicity was achived only for the dielectric constant lower than 25, regardless of the composition of solvent, meaning that the dielectric constant could be an excellent indicator for fabricating superhydrobic surfaces induced by particle aggregation in the solution.

Wettability control in C-SiOx film formed by plasma polymerization of HMDSO/$O_2$ mixture

  • Kim, Seong-Jin;Lee, Kwang-Ryeol;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.328-328
    • /
    • 2011
  • Wetting phenomena have been heavily studied for industrial and academic researches especially tuning the wettability between hydrophilicity and hydrophobicity. Wicking through the surface texture is shown on superhydrophilic surface while rolling (or dewetting) on the patterns of superhydrophobic surface. These wetting phenomena are known to be affected by surface wettability determined with physical surface patterns as well as chemical composition of surface layer. In this research, we introduce a method to control the wettability of a thin C-SiOx film from hydrophobic to hydrophilic using a mixture gas of HMDSO/$O_2$ by plasma polymerization with rf-CVD (radio frequency-Chemical Vapor Deposition). Wettability was finely controlled by changing the ratio of HMDSO/$O_2$. Hydrophilicity increased as the ratio decreased, while hydrophobicity was enhanced by the ratio. Moreover, fine control from superhydrophilicity to superhydrophobicity was achieved by C-SiOx coating on the Si wafer with prepatterns of submicron-sized pillar array formed by $CF_4$ plasma etching.

  • PDF

Fabrication and Medical Applications of Lotus-leaf-like Structured Superhydrophobic Surfaces (연잎 모사 구조로의 초소수성 표면 처리와 의료분야의 적용에 관한 연구)

  • Lim, Jin Ik;Kim, Seung Il;Jung, Youngmee;Kim, Soo Hyun
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.411-419
    • /
    • 2013
  • Various biomaterials have been widely used for biomedical applications, including bio-organs, medical devices, and clinical devices like vessel, blood pumps, artificial kidneys and hearts, even in contact with blood. The issue of blood compatibility has been studied intensively to prevent negative effects such as thrombosis due to the implanted devices. The use of lotus-leaf-like structured surfaces has been extended to an increasing number of applications such as contamination prevention and anticorrosion applications. Various methods such as template, sol-gel transition, layer-by-layer, and other methods, developed for the fabrication of lotus-leaf-like surfaces have been reported for major industrial applications. Recently, the non-wettable character of these surfaces has been shown to be useful for biomedical applications ranging from blood-vessel replacement to antibacterial surface treatment. In this review, we provide a summary of current and future research efforts and opportunities in the development and medical applications of lotus-leaf-like structure surfaces.

Fabrication of superhydrophobic $TiO_2$ thin films by wet process (습식 공정법에 의한 초발수 $TiO_2$ 박막 제조)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun;Cheong, Deock-Soo;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.262-267
    • /
    • 2009
  • Superhydrophobic $TiO_2$ thin films were successfully fabricated on a glass substrate by wet process. Layer-by-layer (LBL) deposition and liquid phase deposition (LPD) methods were used to fabricate the thin films of micro-nano complex structure with a high roughness. To fabricate superhydrophobic $TiO_2$ thin films, the (PAH/PAA) thin films were assembled on a glass substrate by LBL method and then $TiO_2$ nanoparticles were deposited on the surface of (PAH/PAA) thin film by LPD method, Subsequently, hydrophobic treatment using fluoroalkyltrimethoxysilane (FAS) was carried out on the surface of prepared $TiO_2$ thin films. The $TiO_2$ thin film fabricated with 45 minutes immersion time on $(PAH/PAA)_{10}$ showed the RMS roughness of 65.6nm, water contact angel of $155^{\circ}$ and high transmittance of above 80% (>650nm in wavelength) after the hydrophobic treatment. The Surface morphologies, optical properties and contact angel of prepared thin films with different experimental conditions were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Tungsten Oxide nanowire surfaces

  • Gwak, Geun-Jae;Lee, Mi-Gyeong;Yong, Gi-Jung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.25.1-25.1
    • /
    • 2009
  • The effects of surface energyon the wetting transition for impinging water droplets were experimentally investigated on the chemically modified WOx nanowire surfaces. We could modify the surface energy of the nanostructures through chemisorption of alkyltrichlorosilanes with various carbon chain lengths and by the UV-enhanced decomposition of self assembled monolayer (SAM) molecules chemically adsorbedon the array. Three surface wetting states could be identified through the balance between antiwetting and wetting pressures. This approach establishes simple strategy for the design criteria for water-repellent surface to impinging droplets.

  • PDF