• Title/Summary/Keyword: Superhydrophobic Surface

Search Result 113, Processing Time 0.031 seconds

Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures (나노허니컴 구조물을 이용한 산업용 극소수성 표면 제작)

  • Kim, Dong-Hyun;Park, Hyun-Chul;Lee, Kun-Hong;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.17-20
    • /
    • 2007
  • Superhydrophobic polytetrafluoroethylene ($Teflon^{(R)}$, Dupont) sub-micro and nanostructures were fabricated by the dipping method, based on anodization process in oxalic acid. The polymer sticking phenomenon during the replication creates the sub-microstructures on the negative polytetrafluoroethylene nanostructure replica. This process gives a hierarchical structure with nanostructures on sub-microstructures, which looks like the same structures as lotus leaf and enables commercialization. The diameter and the height of the replicated nano pillars were 40 nm and 40 um respectively. The aspect ratio is approximately 1000. The fabricated surface has a semi-permanent superhydrophobicity, the apparent contact angle of the polytetrafluoroethylene sub-micro and nanostructures is about $160^{\circ}$, and the sliding angle is less than $1^{\circ}$.

Fabrication of a robust, transparent, and superhydrophobic soda-lime glass

  • Rahmawan, Yudi;Kwak, Moon-Kyu;Moon, Myoung-Woon;Lee, Kwang-Ryeol;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.86-86
    • /
    • 2010
  • Micro- and nanoscale texturing and control of surface energy have been considered for superhydrophobicity on polymer and silicon. However these surfaces have been reported to be difficult to meet the robustness and transparency requirements for further applications, from self cleaning windows to biochip technology. Here we provided a novel method to fabricate a nearly superhydrophobic soda-lime glass using two-step method. The first step involved wet etching process to fabricate micro-sale patterns on soda-lime glass. The second step involved application of $SiO_x$-incorporated DLC to generate high intrinsic contact angle on the surface using chemical vapor deposition (CVD) process. To investigate the effect of surface roughness, we used both positive and negative micro-scale patterns on soda-limeglass, which is relatively hard for surface texturing in comparison to quartz or Pyrex glasses due to the presence of impurities, but cheaper. For all samples we tested the static wetting angle and transparency before and after 100 cycles of wear test using woolen steel. The surface morphology is observed using optical and scanning electron microscope (SEM). The results shows that negative patterns had a greater wear resistance while the hydrophobicity was best achieved using positive patterns having static contact angle up to 140 deg. with about 80% transparency. The overall experiment shows that positive patterns at etching time of 1 min shows the optimum transparency and hydrophobicity. The optimization of micro-scale pattern to achieve a robust, transparent, superhydrophobic soda-lime glass will be further investigated in the future works.

  • PDF

Fiber network with superhydrophilic Si-DLC coating

  • Kim, Seong-Jin;Mun, Myeong-Un;Lee, Gwang-Ryeol;Kim, Ho-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

Bioinspired CuO Hierarchical Nanostructures for Self-cleaning surfaces and SERS substrates

  • Lee, Jun-Yeong;Han, Jae-Hyeon;Lee, Ji-Hye;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.130-130
    • /
    • 2016
  • Bioinspired hierarchical nanostructures for self-cleaning s-tnwjurface and SERS substrates are investigated. The multi-level hierarchy is combined with CuO nanowire and additional nanoscale structures. CuO nanowire, which has extremely high aspect ratio, serves as a base structure of multi-level hierarchy and additional flower like structures are placed on the CuO nanowires. Since as-fabricated CuO nanostructures are hydrophilic, the surface is coated with perfluorooctyltrichlorosilane in order to change its wetting property to hydrophobic. While those CuO based nanostructures have a sufficient roughness for superhydrophobic characteristics, hierarchical nanoflowers on nanowire structures lead to a self-cleaning surface. Furthermore, flower like nanostructures provide reentrant curvatures, thus enabling oleophobic property. The surfaces has a repellency even for a tiny droplet (10 nL) of low surface tension liquids (~35 mN/m). On the on hands, nanoflowers provide many number of nanoscale gaps. After a thin layer of silver is deposited on the surface of CuO nanostructures, those nanoscale gaps act as hot-spot for surface enhanced Raman scattering (SERS). To analyze SERS enhancement of the surfaces, Raman shift is measured with varying molar density of 4-Mercaptopyridine from mM to pM. From these results, hierarchical CuO nanostructures are suitable for self-maintenance and cost effective SERS sensing applications.

  • PDF

Surface Wettability in Terms of Prominence and Depression of Diverse Microstructures and Their Sizes (다양한 형태의 실리콘 미세 구조물을 이용한 초소수성 표면형상 구현)

  • Ha, Seon-Woo;Lee, Sang-Min;Jeong, Im-Deok;Jung, Phill-Gu;Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.679-685
    • /
    • 2007
  • Superhydrophobic surface, with a water contact angle greater than $150^{\circ}$, has a self-cleaning effect termed 'Lotus effect'. This surface is created by the combination of rough surface and the low surface energy. We proposed square pillar and square shapes to control surface roughness. Microstructure arrays are fabricated by DRIE(Deep Reactive Ion Etching) process and followed by PPFC(Plasma Polymerized Fluorocarbon) deposition. On the experimental result, contact angle at square pillar arrays is well matched with Cassie's model and largest contact angle is $173.37^{\circ}$. But contact angle of square pore shape arrays is lower than Cassie's theoretical contact angle about $5{\sim}10%$. Nevertheless, square pore arrays have more rigidity than square pillar arrays.

Water Repellency on a Nanostructured Superhydrophobic Carbon Fibers Network

  • Ko, Tae-Jun;Her, Eun-Kyu;Shin, Bong-Su;Kim, Ho-Young;Lee, Kwang-Ryeol;Hong, Bo-Ki;Kim, Sae-Hoon;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.224-224
    • /
    • 2012
  • For decades, carbon fiber has expanded their application fields from reinforced composites to energy storage and transfer technologies such as electrodes for super-capacitors and lithium ion batteries and gas diffusion layers for proton exchange membrane fuel cell. Especially in fuel cell, water repellency of gas diffusion layer has become very important property for preventing flooding which is induced by condensed water could damage the fuel cell performance. In this work, we fabricated superhydrophobic network of carbon fiber with high aspect ratio hair-like nanostructure by preferential oxygen plasma etching. Superhydrophobic carbon fiber surfaces were achieved by hydrophobic material coating with a siloxane-based hydrocarbon film, which increased the water contact angle from $147^{\circ}$ to $163^{\circ}$ and decreased the contact angle hysteresis from $71^{\circ}$ to below $5^{\circ}$, sufficient to cause droplet roll-off from the surface in millimeter scale water droplet deposition test. Also, we have explored that the condensation behavior (nucleation and growth) of water droplet on the superhydrophobic carbon fiber were significantly retarded due to the high-aspect-ratio nanostructures under super-saturated vapor conditions. It is implied that superhydrophobic carbon fiber can provide a passage for vapor or gas flow in wet environments such as a gas diffusion layer requiring the effective water removal in the operation of proton exchange membrane fuel cell. Moreover, such nanostructuring of carbon-based materials can be extended to carbon fiber, carbon black or carbon films for applications as a cathode in lithium batteries or carbon fiber composites.

  • PDF

Superhydrophobic/Superoleophobic Spray Coatings based on Photocurable Polyurethane Acrylate and Silica Nanoparticles (UV경화형 폴리우레탄 아크릴레이트와 실리카 나노입자를 이용한 초발수 및 초발유 스프레이 코팅)

  • Kim, Su Hyun;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.58-64
    • /
    • 2020
  • This paper describes a simple approach for preparing a superhydrophobic and superoleophobic coating via spraying the mixture of UV-curable polyurethane acrylate and silica nanoparticles dispersed in a solvent. The prepared surface structures can be controlled by changing the types of solvents, the concentration of the polymer, and the amount of spraying. Superhydrophobicity and superoleophobicity are quantified by measuring the contact angle of water and oil, respectively. We also demonstrate the mechanism of spray coating with maximized superhydrophobicity and superoleophobicity through the analysis of re-entrant surface structures. At the appropriate amount and the composition of mixed solutions, the contact angle hysteresis of water and oil on the prepared surface is less than 2° and 30°, respectively. In addition, it shows excellent water-repellent and oil-repellent properties such that the oil droplet bounces off the surface.

Computational Modelling of Droplet Dynamics Behaviour in Polymer Electrolyte Membrane Fuel Cells: A Review

  • Yong, K.W.;Ganesan, P.B.;Kazi, S.N.;Ramesh, S.;Sandaran, S.C.
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.345-360
    • /
    • 2019
  • Polymer Electrolyte Membrane Fuel Cells (PEMFC) is one of the leading advanced energy conversion technology for the use in transport. It generates water droplets through the catalytic processes and dispenses the water through the gas-flowed microchannels. The droplets in the dispensing microchannel experience g-forces from different directions during the operation in transport. Therefore, this paper reviews the computational modelling topics of droplet dynamics behaviour specifically for three categories, i.e. (i) the droplet sliding down a surface, (ii) the droplet moving in a gas-flowed microchannel, and (iii) the droplet jumping upon coalescence on superhydrophobic surface; in particular for the parameters like hydrophobicity surfaces, droplet sizes, numerical methods, channel sizes, wall conditions, popular references and boundary conditions.

Micro/nanostructured Superhydrophobic Surface (자연에서 배운 마이크로/나노구조물을 이용한 초발수 표면)

  • Lim, Hyun-Eui;Park, Joon-Sik;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.244-251
    • /
    • 2009
  • Recently, there are a lot of studies on the engineering application of biomimetic functional surface in the world. The nature-inspired functional surfaces offer many solutions for copying with problems which are faced with human such as environmental contamination, energy depletion, exhaustion of water, and food shortage by giving the high quality function to industrial products. In this paper, we introduce the superhydrophobicity of nature surface and review the research on theoretical modeling and fabrication of superhydrophobic surface with micro/nanostructure.