Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00262

Computational Modelling of Droplet Dynamics Behaviour in Polymer Electrolyte Membrane Fuel Cells: A Review  

Yong, K.W. (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti)
Ganesan, P.B. (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti)
Kazi, S.N. (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti)
Ramesh, S. (Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Jalan Universiti)
Sandaran, S.C. (Universiti Teknologi Malaysia)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.4, 2019 , pp. 345-360 More about this Journal
Abstract
Polymer Electrolyte Membrane Fuel Cells (PEMFC) is one of the leading advanced energy conversion technology for the use in transport. It generates water droplets through the catalytic processes and dispenses the water through the gas-flowed microchannels. The droplets in the dispensing microchannel experience g-forces from different directions during the operation in transport. Therefore, this paper reviews the computational modelling topics of droplet dynamics behaviour specifically for three categories, i.e. (i) the droplet sliding down a surface, (ii) the droplet moving in a gas-flowed microchannel, and (iii) the droplet jumping upon coalescence on superhydrophobic surface; in particular for the parameters like hydrophobicity surfaces, droplet sizes, numerical methods, channel sizes, wall conditions, popular references and boundary conditions.
Keywords
Droplet Sliding; PEMFC; Jumping; CFD; Hydrophilic; Hydrophobic; Superhydrophobic Surfaces;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Loyselle, K. Prokopius, Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant; Ohio, 2011.
2 S. Byun, D. Kwak, J. Electrochem. Sci. Technol., 2019, 10(2), 104-114.   DOI
3 M. Mortazavi, A. D. Santamaria, V. Chauhan, J. Z. Benner, J. Electrochem. Soc., 2019, 166(7), F3143-F3153.   DOI
4 V. Palan, S. W. J. Shepard, A. K. Williams, J. Power Sources, 2006, 161(2), 1116-1125.   DOI
5 A. Theodorakakos, T. Ous, M. Gavaises, J. M. Nouri, N. Nikolopoulos, H. Yanagihara, J. Colloid Interface Sci., 2006, 300(2), 673-687.   DOI
6 X. Zhu, Q. Liao, P. C. Sui, N. Djilali, J. Power Sources, 2010, 195(3), 801-812.   DOI
7 L. Hao, P. Cheng, Int. J. Heat Mass Transf., 2010, 53(5-6), 1243-1246.   DOI
8 C. Qin, D. Rensink, S. Hassanizadeh, J. Electrochem. Soc., 2012, 159(4), 434-443.   DOI
9 S. C. Cho, Y. Wang, K. S. Chen, J. Power Sources, 2012, 210, 191-197.   DOI
10 A. Bazylak, D. Sinton, N. Djilali, J. Power Sources, 2008, 176(1), 240-246.   DOI
11 A. Kumar, R. G. Reddy, J. Power Sources, 2003, 114(1), 54-62.   DOI
12 C. Hartnig, I. Manke, R. Kuhn, S. Kleinau, J. Goebbels, J. Banhart, J. Power Sources, 2009, 188(2), 468-474.   DOI
13 P. D. M. Spelt, J. Comput. Phys., 2005, 207(2), 389-404.   DOI
14 L. W. Schwartz, D. Roux, J. J. Cooper White, Phys. D, 2005, 209(July), 236-244.   DOI
15 Y. Y. Koh, Y. C. Lee, P. H. Gaskell, P. K. Jimack, H. M. Thompson, Eur. Phys. J. Spec. Top., 2009, 166, 117-120.   DOI
16 J. B. Dupont, D. Legendre, J. Comput. Phys., 2010, 229(7), 2453-2478.   DOI
17 L. de Oliveira, D. Lopes, S. Ramos, J. Mombach, Soft Matter, 2011, 7, 3763-3765.   DOI
18 A. S. Ravi, J. Y. Murthy, S. V. Garimella, Int. J. Heat Mass Transf., 2012, 55(5-6), 1466-1474.   DOI
19 Z. Khatir, K. J. Kubiak, P. K. Jimack, T. G. Mathia, Appl. Therm. Eng., 2016, 106, 1337-1344.   DOI
20 Y. Shi, G. H. Tang, H. H. Xia, Int. J. Heat Mass Transf., 2015, 88(4), 445-455.   DOI
21 L. Zhang, W. Yuan, Appl. Surf. Sci., 2018, 436, 172-182.   DOI
22 F. Chu, Z. Yuan, X. Zhang, X. Wu, Int. J. Heat Mass Transf., 2018, 121, 315-320.   DOI
23 C. Lee, S. Lyu, J. W. Park, W. Hwang, Adv. Eng. Softw., 2016, 91, 44-50.   DOI
24 G. Ahmed, M. Sellier, Y. C. Lee, M. Jermy, M. Taylor, Colloids Surfaces A Physicochem. Eng. Asp., 2013, 432, 2-7.   DOI
25 G. Ahmed, M. Sellier, M. Jermy, M. Taylor, Eur. J. Mech. B/Fluids, 2014, 48, 218-230.   DOI
26 S. Cho, M. Cha, M. Kim, Y. Sohn, T. Yang, W. Lee, J. Electrochem. Sci. Technol., 2016, 7(1), 41-51.   DOI
27 K. W. Yong, P. B. Ganesan, S. N. Kazi, S. Ramesh, I. A. Badruddin, N. M. Mubarak, Phys. Fluids, 2018, 30(12), 122006.   DOI
28 X. Liu, P. Cheng, X. Quan, Int. J. Heat Mass Transf., 2014, 73, 195-200.   DOI
29 F. Liu, G. Ghigliotti, J. J. Feng, C. H. Chen, J. Fluid Mech., 2014, 752(2014), 22-38.   DOI
30 X. Liu, P. Cheng, Int. Commun. Heat Mass Transf., 2015, 64, 7-13.   DOI
31 S. Farokhirad, J. F. Morris, T. Lee, Phys. Fluids, 2015, 27(10).
32 S. H. Jin, H. H. Jeong, B. Lee, S. S. Lee, C. S. Lee, Lab Chip, 2015, 15(18), 3677-3686.   DOI
33 Y. Shi, G. H. Tang, Comput. Math. with Appl., 2018, 75(4), 1213-1225.   DOI
34 G. Londe, A. Chunder, A. Wesser, L. Zhai, H. Cho, Sensors Actuators B Chem., 2008, 132(2), 431-438.   DOI
35 J. P. La, A. Jonsson, S. Senkbeil, J. P. Kutter, Biosens. Bioelectron., 2016, 76, 213-233.   DOI
36 M. Sakai, J. H. Song, N. Yoshida, S. Suzuki, Y. Kameshima, A. Nakajima, Langmuir, 2006, 22(11), 4906-4909.   DOI
37 A. Nakajima, K. Hashimoto, T. Watanabe, Monatshefte fuer Chemie, 2001, 132(1), 31-41.   DOI
38 V. P. Carey, Liquid-Vapor Phase Change Phenomena, 2nd ed.; Scholl, S., Ed.; Taylor & Francis Group: New York, 2008.
39 R. N. Wenzel, J. Phys. Colloid Chem., 1949, 53(9), 1466-1467.   DOI
40 A. B. D. Cassie, S. Baxter, Trans. Faraday Soc., 1944, 40, 546.   DOI
41 E. Bormashenko, P. Faculty, Adv. Colloid Interface Sci., 2015, 222, 92-103.   DOI
42 J. Cui, W. Li, W. H. Lam, Comput. Math. with Appl., 2011, 61(12), 3678-3689.   DOI
43 B. He, J. Lee, N. A. Patankar, Colloids Surfaces A Physicochem. Eng. Asp., 2004, 248(2004), 101-104.   DOI
44 X. T. Zhu, Z. Z. Zhang, X. h. Xu, X. h. Men, J. Yang, X. y. Zhou, Q. J. Xue, J. Colloid Interface Sci., 2012, 367(1), 443-449.   DOI
45 D. Khojasteh, M. Kazerooni, S. Salarian, R. Kamali, J. Ind. Eng. Chem., 2016, 42(2016), 1-14.   DOI
46 G. Mchale, N. J. Shirtcliffe, M. I. Newton, Langmuir, 2004, 20, 10146-10149.   DOI
47 B. He, N. A. Patankar, J. Lee, Langmuir, 2003, 19, 4999-5003.   DOI
48 N. A. Patankar, Langmuir, 2003, 19, 1249-1253.   DOI
49 J. Bico, C. Marzolin, D. Qu, Europhys. Lett., 1999, 47(July), 220-226.   DOI
50 J. Min, R. L. Webb, Exp. Therm. Fluid Sci., 2000, 22(3-4), 175-182.   DOI
51 E. Moallem, S. Padhmanabhan, L. Cremaschi, D. E. Fisher, Int. J. Refrig., 2012, 35(1), 171-186.   DOI
52 P. B. Ganesan, S. M. Vanakia, K. K. Thoo, W. M. Chin, Int. Commun. Heat Mass Transf., 2016, 74, 27-35.   DOI
53 F. Chu, X. Wu, Q. Ma, Appl. Therm. Eng., 2017, 115, 1101-1108.   DOI
54 H. W. Hu, G. H. Tang, D. Niu, Appl. Therm. Eng., 2016, 100, 699-707.   DOI
55 D. E. Kim, H. S. Ahn, T. S. Kwon, Appl. Therm. Eng., 2017, 110, 412-423.   DOI
56 J. B. Boreyko, C. P. Collier, ACS Nano, 2013, 7(2), 1618-1627.   DOI
57 Q. Zhang, M. He, J. Chen, J. Wang, Y. Song, L. Jiang, Chem. Commun., 2013, 49(40), 4516.   DOI
58 L. Cao, A. K. Jones, V. K. Sikka, J. Wu, D. Gao, Langmuir, 2009, 25(21), 12444-12448.   DOI
59 B. Krasovitski, A. Marmur, Langmuir, 2005, 21, 3881-3885.   DOI
60 A. I. ElSherbini, A. M. Jacobi, J. Colloid Interface Sci., 2006, 299(2), 841-849.   DOI
61 X. G. Yang, F. Y. Zhang, A. L. Lubawy, C. Y. Wang, 2004, 408-411.
62 B. Peng, S. Wang, Z. Lan, W. Xu, R. Wen, X. Ma, Appl. Phys. Lett., 2013, 102(15).
63 N. Miljkovic, D. J. Preston, R. Enright, E. N. Wang, ACS Nano, 2013, 7(12), 11043-11054.   DOI
64 J. B. Boreyko, C. H. Chen, Phys. Rev. Lett., 2009, 103(18), 184501.   DOI
65 Y. Nam, H. Kim, S. Shin, Appl. Phys. Lett., 2013, 103(16).
66 L. Z. Zhang, W. Z. Yuan, Appl. Surf. Sci., 2018, 436, 172-182.   DOI
67 Y. Hou, H. Deng, Q. Du, K. Jiao, J. Power Sources, 2018, 393(February), 83-91.   DOI
68 J. Yu, D. Froning, U. Reimer, W. Lehnert, Int. J. Hydrogen Energy, 2018, 43(12), 6318-6330.   DOI
69 D. G. Venkateshan, H. V. Tafreshi, Colloids Surfaces A Physicochem. Eng. Asp., 2018, 538(October 2017), 310-319.   DOI
70 X. Shang, Z. Luo, E. Ya, O. A. Kabov, B. Bai, Comput. Fluids, 2018, 172, 181-195.   DOI
71 P. Gopalan, S. G. Kandlikar, Colloids Surfaces A Physicochem. Eng. Asp., 2014, 441, 262-274.   DOI
72 P. Gopalan, S. G. Kandlikar, J. Electrochem. Soc., 2013, 160(6), F487-F495.   DOI
73 R. Kamali, D. Khojasteh, S. M. Mousavi, In 24th Annual International Conference on Mechanical Engineering; 2016; p 24486.
74 F. Tavakoli, H. P. Kavehpour, Langmuir, 2015, 31, 2120-2126.   DOI
75 M. Kim, H. Kim, K. Lee, D. R. Kim, Energy Convers. Manag., 2017, 138, 1-11.   DOI
76 X. Li, L. Zhang, X. Ma, H. Zhang, Surf. Coat. Technol., 2016, 307(2016), 243-253.   DOI
77 N. D. Patil, V. H. Gada, A. Sharma, R. Bhardwaj, Int. J. Multiph. Flow, 2016, 81, 54-66.   DOI
78 N. Patil, R. Bhardwaj, Int. J. Micro-Nano Scale Transp., 2014, 5(2), 51-58.   DOI
79 J. R. Moffat, K. Sefiane, M. E. R. Shanahan, J. Nano Res., 2009, 7, 75-80.   DOI
80 G. McHale, S. M. Rowan, M. I. Newton, M. K. Banerjee, J. Phys. Chem. B, 1998, 102(11), 1964-1967.   DOI
81 W. K. Choi, E. Lebrasseur, M. I. Al-Haq, H. Tsuchiya, T. Torii, H. Yamazaki, E. Shinohara, T. Higuchi, Sensors Actuators, A Phys., 2007, 136(1), 484-490.   DOI
82 H. Ren, R. B. Fair, M. G. Pollack, Sensors Actuators B Chem., 2004, 98(2-3), 319-327.   DOI
83 P. Onnerfjord, J. Nilsson, L. Wallman, T. Laurell, G. Marko-Varga, Anal. Chem., 1998, 70(22), 4755-4760.   DOI
84 T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir, 1996, 12(9), 2125-2127.   DOI
85 K. Ellinas, A. Tserepi, E. Gogolides, Microfluid. Nanofluidics, 2014, 17(3), 489-498.   DOI
86 W. Yeong, L. Ling, T. Wah, A. Neild, Q. Zheng, J. Colloid Interface Sci., 2011, 354(2), 832-842.   DOI
87 A. P. Washe, P. Lozano S., D. Bejarano N., B. Teixeira D., I. Katakis, Microelectron. Eng., 2013, 111, 416-420.   DOI
88 W. Fang, H. Mayama, K. Tsujii, Colloids Surfaces A Physicochem. Eng. Asp., 2008, 316(1-3), 258-265.   DOI
89 H. Yan, H. Shiga, E. Ito, T. Nakagaki, S. Takagi, T. Ueda, K. Tsujii, Colloids Surfaces A Physicochem. Eng. Asp., 2006, 284-285, 490-494.   DOI
90 S. Shibuichi, T. Yamamoto, T. Onda, K. Tsujii, J. Colloid Interface Sci., 1998, 208(1), 287-294.   DOI
91 S. Suzuki, A. Nakajima, Y. Kameshima, K. Okada, Surf. Sci. Lett., 2004, 557.   DOI
92 N. Yoshida, Y. Abe, H. Shigeta, A. Nakajima, H. Ohsaki, J. Am. Chem. Soc., 2006, 128(13), 743-747.   DOI
93 M. Sakai, Surf. Sci., 2006, 600, L204-L208.   DOI
94 Z. Yoshimitsu, A. Nakajima, T. Watanabe, Langmuir, 2002, 18, 5818-5822.   DOI
95 Y. Wu, Y. Inoue, H. Sugimura, O. Takai, H. Kato, S. Murai, H. Oda, Thin Solid Films, 2002, 407(1-2), 45-49.   DOI
96 T. He, Y. Wang, Y. Zhang, Q. lv, T. Xu, T. Liu, Corros. Sci., 2009, 51(8), 1757-1761.   DOI
97 H. Saffari, B. Sohrabi, M. R. Noori, H. R. T. Bahrami, Appl. Surf. Sci., 2018, 435, 1322-1328.   DOI
98 Y. Wu, M. Bekke, Y. Inoue, H. Sugimura, H. Kitaguchi, C. Liu, O. Takai, Thin Solid Films, 2004, 457(1), 122-127.   DOI
99 Y. Wu, Surf. Sci., 2006, 600, 3710-3714.   DOI
100 T. Okada, G. Xie, M. Meeg, Electrochim. Acta, 1998, 43(14-15), 2141-2155.   DOI
101 L. You, H. Liu, Int. J. Heat Mass Transf., 2002, 45(11), 2277-2287.   DOI
102 Z. H. Wang, C. Y. Wang, K. S. Chen, J. Power Sources, 2001, 94(1), 40-50.   DOI
103 S. Gogte, P. Vorobieff, R. Truesdell, A. Mammoli, F. van Swol, P. Shah, C. J. Brinker, Phys. Fluids, 2005, 17(5), 1-4.
104 W. Barthlott, C. Neinhuis, Planta, 1997, 202(1), 1-8.   DOI
105 E. Ueda, P. A. Levkin, Adv. Mater., 2013, 25(9), 1234-1247.   DOI
106 B. L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu, L. Jiang, ... D. B. Zhu, Adv. Mater., 2002, 14(24), 1857-1860.   DOI
107 H. Matsui, Y. Noda, T. Hasegawa, Langmuir, 2012, 28(2012), 15450-15453.   DOI
108 J. Drelich, J. L. Wilbur, J. D. Miller, G. M. Whitesides, Langmuir, 1996, 12, 1913-1922.   DOI
109 S. Suzuki, A. Nakajima, K. Tanaka, Appl. Surf. Sci., 2008, 254, 1797-1805.   DOI
110 B. Chang, Q. Zhou, R. H. A. Ras, A. Shah, Z. Wu, K. Hjort, Appl. Phys. Lett., 2016, 108(15), 154102.   DOI
111 Y. Lin, Z. Wu, Y. Gao, J. Wu, W. Wen, Appl. Surf. Sci., 2018, 442, 189-194.   DOI
112 J. Huang, R. Fan, S. Connor, P. Yang, Angew. Chemie Int. Ed., 2007, 46(14), 2414-2417.   DOI
113 X. Xu, Y. Di, M. Doi, 2016, 087101.
114 L. W. Schwartz, Lanngmuir, 1998, 14, 3440-3453.   DOI
115 X. Zhu, P. C. Sui, N. Djilali, J. Power Sources, 2008, 181(1), 101-115.   DOI
116 C. W. Hirt, B. D. Nichols, J. Comput. Phys., 1981, 39(1), 201-225.   DOI
117 X. Shan, H. Chen, Phys. Rev. E, 1994, 49(4), 2941-2948.   DOI
118 M. R. Barkhudarov, Semi-Lagrangian VOF Advection Method for FLOW-3D; 2003; Vol. FSI-03-TN6.
119 D. A. Perumal, A. K. Dass, Alexandria Eng. J., 2015, 54(4), 955-971.   DOI
120 X. He, L. Luo, Phys. Rev. E, 1997, 56(6), 6811-6817.   DOI
121 Q. Li, K. H. Luo, X. J. Li, Phys. Rev. E, 2013, 87(5), 053301.   DOI
122 A. D. Schleizer, R. T. Bonnecaze, J. Fluid Mech., 1999, 383(July), 29-54.   DOI
123 B. Lavi, A. Marmur, Colloids Surfaces A Physicochem. Eng. Asp., 2004, 250(1-3 SPEC. ISS.), 409-414.   DOI
124 S. M. M. Ramos, A. Benyagoub, B. Canut, C. Jamois, Langmuir, 2010, 26(7), 5141-5146.   DOI
125 T. Podgorski, J. M. Flesselles, L. Limat, Phys. Rev. Lett., 2001, 87(3), 361021-361024.
126 S. Kulju, L. Riegger, P. Koltay, K. Mattila, J. Hyvaluoma, J. Colloid Interface Sci., 2018, 522(2018), 48-56.   DOI
127 P. T. Yue, C. F. Zhou, J. J. Feng, C. F. Ollivier G., H. H. Hu, J. Comput. Phys., 2006, 219(1), 47-67.   DOI
128 P. Yuan, University of Pittsburgh, 2005.
129 H. Wang, L. Tang, X. Wu, W. Dai, Y. Qiu, Appl. Surf. Sci., 2007, 253(22), 8818-8824.   DOI
130 N. Thanh vinh, H. Takahashi, K. Matsumoto, I. Shimoyama, Sensors Actuators A. Phys., 2015, 231(2015), 35-43.   DOI
131 Z. Jin, H. Zhang, Z. Yang, Int. J. Heat Mass Transf., 2016, 103(2016), 886-893.   DOI
132 S. Wang, X. Yu, C. Liang, Y. Zhang, Appl. Therm. Eng., 2018, 137(April), 758-766.   DOI
133 R. P. Garrod, L. G. Harris, W. C. E. Schofield, J. Mcgettrick, L. J. Ward, D. O. H. Teare, J. P. S. Badyal, Langmuir, 2007, 23, 689-693.   DOI
134 J. B. Marcinichen, J. A. Olivier, V. de Oliveira, J. R. Thome, Appl. Energy, 2012, 92, 147-161.   DOI
135 K. Ellinas, V. Pliaka, G. Kanakaris, A. Tserepi, L. G. Alexopoulos, E. Gogolides, Microelectron. Eng., 2017, 175, 73-80.   DOI
136 C. Lv, P. Hao, Z. Yao, Y. Song, X. Zhang, F. He, Appl. Phys. Lett., 2013, 103(2), 021601.   DOI
137 A. I. ElSherbini, A. M. Jacobi, J. Colloid Interface Sci., 2004, 273(2), 556-565.   DOI
138 A. I. ElSherbini, A. M. Jacobi, J. Colloid Interface Sci., 2004, 273(2), 566-575.   DOI
139 D. Zhang, K. Papadikis, S. Gu, Int. J. Multiph. Flow., 2014, 64, 11-18.   DOI