• Title/Summary/Keyword: Superheat control

Search Result 63, Processing Time 0.023 seconds

Evaporator Superheat Control of a Multi-type Air-Conditioning/Refrigeration System (멸티형 공조/냉동시스템의 증발기 과열도 제어)

  • 김태섭;홍금식;손현철
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.253-265
    • /
    • 2001
  • This paper investigates a PI control problem for the evaporator superheat, i.e., temperature difference between the two-phase region and the exit region of an evaporator, for multi-type air-conditioning/refrigeration system. Mathematical model describing the characteristics of compressor, condenser, evaporator, and electronic expansion valve are first derived. Then, two transfer function from the current input applied to an electronic expansion valve to the wall-temperatures of an evaporator tube at two-phase region and superheated region, respectively, are derived. The stability of the closed loop system with the PI controller designed it analyzed by using Nyquist stability criterion. Simulation results are provided.

  • PDF

The Comparison of Performance Characteristics in Refrigeration System using $NH_3$ and R22 ($NH_3$와 R22를 사용한 냉동장치의 성능특성 비교)

  • Ha Ok-Nam;Lee Kyu-Tae;Ha Kyung-Soo;Jeong Song-Tae;Kim Jin-Hyun;Hong Seong-In;Yun Kab-Sig;Kim Yang-Hyun;Kwon Il-Wook;Lee Jong-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.377-383
    • /
    • 2006
  • Recently, production and use of Freon substances are restrained due to destruction of ozone layer and grobal warming. In this aspect of environmental problems, the best solution is to use the natural refrigerant such as ammonia. Thus, this study apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 1,500 kPa to 1,600 kPa and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

Fuzzy Control Algorithms for the Compressor and the Electronic Expansion Valve of a Multi-type Air-conditioning System using Multiple Input Variables (다입력변수를 사용한 멀티형 공조시스템 압축기와 전자팽창밸브의 퍼지 제어 알고리즘)

  • Han, Do-Young;Park, Kwan-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.163-171
    • /
    • 2006
  • In order to control multi-zone temperatures, a multi-type air-conditioning system may be used. In this study, control algorithms for the compressor and the electronic expansion valve of a multi-type air-conditioning system were developed by using fuzzy logics. The compressor control algorithm was composed of a compressor pressure setpoint algorithm, a compressor pressure setpoint reset algorithm, and a compressor frequency setpoint algorithm. The electronic expansion valve control algorithm was composed of an indoor temperature control algorithm, and a superheat control algorithm. These algorithms were applied to a multi-type air-conditioning system. Test showed good results for the control of a multi-type air-conditioning system.

Design of Optimized Multi-Fuzzy Controllers for Air-Conditioning System with Multi-Evaporators (다중 증발기를 갖는 에어컨시스템에 대한 최적화된 Multi-Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • In this paper, we introduce an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of aft conditioning system. Air conditioning system is composed of compressor, condenser several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as two kinds of controller types such as a continuous simplified fuzzy inference type and a discrete fuzzy lookup_table type. Here the scaling factors of each fuzzy controller ate efficiently adjusted by veal coding type Genetic Algorithms. The values of performance index of the conventional type are compared with the simulation results of discrete lookup_table type and continuous simplified inference type.

Control of Refrigerating Compressor Capacity Using Inverter (인버터를 이용한 냉동용 압축기의 용량 제어)

  • Yang, H.S.;Kim, H.S.;Kim, J.H.;Kim, S.B.;Kim, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.94-101
    • /
    • 1993
  • Recently, efforts of decreasing energy consumption are continously increased and user's preference is also diversified in refrigeration and air conditioning systems. Thus, in order to satisfy these demands, high efficiency, high intelligence, and energy saving for those systems are essential. As the basic study for diverse functions and intelligence of those systems, we investigated the response characteristics through the compressor capacity control concerned with superheat and refrigeration room temperature. And, response characteristics are investigated experimentally by using micro computer based PWM inverter control method. Experimental result of the conventional on-off control method is given in order to be compared to the results of inverter control method. The results obtained through this study are summarized as follows. It is shown from the experimental results of the on-off control method that the range of temperature variation around the steady state ($-18^{\circ}C$) is very large (about $7{\sim}8^{\circ}C$) and the settling time bringing the steady state is not found. In the inverter control method, we can see that the refrigeration room temperature after reaching the setting temperature is very stable without fluctuation and a robust control for disturbance such as opening the door has been realized.

  • PDF

Performance of an inverter refrigeration system with a change of expansion devices (인버터형 냉동시스템의 팽창장치 변경에 따른 성능특성)

  • 이용택;김용찬;박윤철;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.928-936
    • /
    • 1999
  • An experimental study was performed to investigate characteristics of an inverter driven water-to-water refrigeration system with a variation of compressor frequencies and expansion devices. The frequency of a compressor varied from 30Hz to 75Hz, and performance of the systems applying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve(EEV) were measured. The load conditions were altered by varying the temperature of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test conditions were deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimum control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in an inverter refrigeration system due to active control of flow area with a change of compressor frequency and load conditions.

  • PDF

Numerical Simulation of a System Heat Pump Adopting an Integral Optimum Regulating Controller (적분형 최적 레귤레이터 적용 시스템 히트펌프 제어 시뮬레이션 연구)

  • Kim, Yongchan;Choi, Jong Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.398-405
    • /
    • 2013
  • Small and medium-size buildings employ a multi-distributed individual air-conditioning system that utilizes package air conditioners instead of centralized cooling systems, which can allow easier building management and maintenance, along with a diversification of facility use. Inverter driven system heat pumps have been developed to achieve not only an easy distribution control, allowing free combination of indoor units with different models and different capacities, but also wide applications to intelligent air conditioning. However, the control algorithms of the system heat pump are limited in the open literature, due to complicated operating conditions. In this paper, an inverter-driven system heat pump having two indoor units with electronic expansion valves (EEV) was simulated in the cooling mode. An integral optimum regulating controller employing the state space control method was also simulated, and applied to the system-heat pump system, to obtain efficient control of the MIMO (multi input multi output) system. The simulation model for the controller yielded satisfactory prediction results. The new control model can be successfully utilized as a basic tool in controller design.

A Study on the Operating Control of a Heat Pump System with Screw Compressors (스크류 열펌프 시스템의 운전제어 방안에 관한 연구)

  • Park, Jun-Tark;Lee, Young-Soo;Kim, Jiyoung;Chae, Kyu-Jung;Yang, Hee-Jung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.168-172
    • /
    • 2013
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump system, which will be used for district heating and cooling. In this study, two issues of the system operating control were investigated. The first issue is the mode switching control from 1-stage to 2-stage. A stable 2-stage heating operation is guaranteed, only if the load-side water inlet temperature is over a certain value, where the 1-stage heating operation should be done first from a cold start. The second issue is oil level control. An oil shortage problem in the low stage compressor, which depends on the degree of suction superheat, was solved by a proper oil level control scheme.