• Title/Summary/Keyword: Supercritical pressure

Search Result 416, Processing Time 0.024 seconds

Separation of Protein and Fatty Acids from Tuna Viscera Using Supercritical Carbon Dioxide

  • Kang Kil-Yoon;Ahn Dong-Hyun;Jung Sun-Mi;Kim Dong-Hun;Chun Byung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.315-321
    • /
    • 2005
  • Supercritical carbon dioxide extraction was investigated as a method for removing lipids and bad flavor from tuna viscera. To find the optimum conditions, different experimental variables, such as pressure, temperature, flow rate of solvent and sample size, were evaluated for the effective removal of lipids and the undesirable smell. Ethanol was used as the entrainer, with a $3\%$ by vol $CO_2$ flow rate. By increasing the pressure at constant temperature, the efficiency of the lipid removal was improved and the protein was concentrated without denaturalization. The main fatty acids extracted from the tuna viscera were palmitic acid (16:0), heptadecanoic acid (17:1), oleic acid (18:1) and docosahexaenoic acid (22:6). The major amino acids in the tuna viscera treated by supercritical carbon dioxide were glutamic acid, leucine and lysine, and the free amino acids were L-proline, taurine and L-$\alpha$-aminoadipic acid.

Purification of Eicosapentaenoic Acid (EPA) by Density Gradient Supercritical $CO_2$ Chromatography (밀도구배 초임계 $CO_2$ 크로마토그래피에 의한 Eicosapentaenoic Acid (EPA) 정제)

  • 유병삼;변상요
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.109-113
    • /
    • 1999
  • Supercritical $CO_2$ chromatography was applied for purification of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil. Various supercritical $CO_2$ pressures were tested to find out the pressure effects on solubility and selectivity of low fatty acids in the silver nitrate column. The solubility of low fatty acids was increased as the supercntical $CO_2$ Pressure increased. However, the selectiviy between low fatty acids and EPA waw decreased. Stepwise density gradient method was applied to increase the purification efficiency of EPA. Low fatty acids were easily separated at the early elution steps with low $CO_2$ densities. Successive fractions containing 92.1~97.8% of EPA were collected. The average concentration of three purified fractions was 95.6% with the recovery rate of 30%.

  • PDF

Powder Injection Molding of Translucent Alumina using Supercritical Fluid Debinding

  • Kim, Hyung Soo;Byun, Jong Min;Suk, Myung Jin;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.407-414
    • /
    • 2014
  • The powder injection molding process having advantages in manufacturing three-dimensional precision parts essentially requires a debinding process before sintering to remove the binders used for preparing feedstock. In this study, powder injection molding of translucent alumina was performed, and carbon dioxide ($CO_2$) is used as a supercritical fluid that makes it possible to remove a large amount of binder, which is paraffin wax. The relationship between the optical property of translucent alumina and the debinding condition (temperature and pressure) of supercritical $CO_2$ was investigated. As temperature and pressure increased, extraction rate of the binder showed rising tendency and average grain size after sintering process was relatively fine. On the other hand, optical transmittance was reduced. As a result, the debinding condition at $50^{\circ}C$ and 20 MPa that represents the lowest extraction rate, $8.19{\times}10^{-3}m^2/sec$, corresponds to the largest grain size of $14.7{\mu}m$ and the highest optical transmittance of 45.2%.

CRITICAL FLOW EXPERIMENT AND ANALYSIS FOR SUPERCRITICAL FLUID

  • Mignot, Guillaume;Anderson, Mark;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.133-138
    • /
    • 2008
  • The use of Supercritical Fluids(SCF) has been proposed for numerous power cycle designs as part of the Generation IV advanced reactor designs, and can provide for higher thermal efficiency. One particular area of interest involves the behavior of SCF during a blowdown or depressurization process. Currently, no data are available in the open literature at supercritical conditions to characterize this phenomenon. A preliminary computational analysis, using a homogeneous equilibrium model when a second phase appears in the process, has shown the complexity of behavior that can occur. Depending on the initial thermodynamic state of the SCF, critical flow phenomena can be characterized in three different ways; the flow can remain in single phase(high temperature), a second phase can appear through vaporization(high pressure low temperature) or condensation(high pressure, intermediate temperature). An experimental facility has been built at the University of Wisconsin to study SCF depressurization through several diameter breaks. The preliminary results obtained show that the experimental data can be predicted with good agreement by the model for all the different initial conditions.

EXPERIMENTAL INVESTIGATIONS ON HEAT TRANSFER TO CO2 FLOWING UPWARD IN A NARROW ANNULUS AT SUPERCRITICAL PRESSURES

  • Kim, Hwan-Yeol;Kim, Hyung-Rae;Kang, Deog-Ji;Song, Jin-Ho;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Heat transfer experiments in an annulus passage were performed using SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation), which was constructed at KAERI(Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical $CO_{2}$. $CO_{2}$ was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 $kg/m^{2}s$ and the heat flux was chosen at rates up to 150 $kW/m^{2}$. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.

A Study of Physical and Thermal Properties of Dyed PET Fiber using Supercritical Fluid Dyeing Technology (초임계 유체 염색기술 적용 PET 섬유의 물리적 및 열적 특성 분석)

  • Kim, Sam Soo;Oh, Jiyeon;Park, Changpyo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.147-154
    • /
    • 2019
  • In this study, poly(ethylene terephthalate)(PET) fibres dyed with Disperse Red 167 using supercritical $CO_2$ technology. The purpose of this study was to investigate relationship between PET fibers and supercritical $CO_2$ during dyeing. The effects of temperature, pressure, dyeing time and mass ratio between the dye and PET in the dyeing chamber were considered. Thermal and mechanical properties of the fibers were investigated. Tensile strength of dyed PET fibers decreased at higher temperature and pressure conditions. DSC and DMA results indicated that the Tg and Tm values decreased significantly when compared to the pure PET fibers. However, uniformly dyed PET fibers were typically observed.

Selective Extraction of Phospholipids from Soybeans with Mixture of Supercritical Carbondioxide and Ethanol (초임계 $CO_2$와 에탄올 혼합물에 의한 대두인지질의 선택적 추출)

  • Lee, Mi-Jin;Jeon, Young-Soo;Jeong, Noh-Hee;Jeang, Bu-Shik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.233-239
    • /
    • 2010
  • Supercritical carbondioxide is very effective in removing oils from a variety of seed matrices, devoid of any appreciable amount of phospholipid content. However, the limited solubility of phosphalipids in supercritical carbondioxide leaves behind a potentially valuable by-product in spent seed matrix. Any phospholipid extraction process from the spent matrix must maintain the structure and the quality of phospholipids and must be compatible with the end use of the seed protein meal an animal feed or for human consumption. An initial supercritical carbondioxide extraction of soybean flakes was performed at 32 MPa and $80^{\circ}C$ to extract the oils, leaving the phospholipids in the deflatted soybean flakes, A second step was performed on the defatted soybean flake using $X_{eth}$=0.10, Varying the pressure from 175 MPa to 70.6 MPa and temperature from $60^{\circ}C$ to $80^{\circ}C$. For all supercritical carbon dioxide/ethanol mixture extractions, a fraction rich in phospholipids was obtained. The fractions extracted from defatted soybean flakes were dried and them redissolved in chloroform before HPLC-ELSD analysis. Quantitative and qualitative analysis of phospholipids on soybean seeds, defatted soybean flake, and different extracted phospholipid fractions was carried out, to ascertain the effect of extraction pressure and temperature.

Effects of Supercritical Carbon Dioxide on Sterilization and Enzyme Inactivation in Dongchimi (초임계 이산화탄소의 동치미 살균 및 효소 불활 효과)

  • Park, Joo-Seok;Hong, Joo-Heon;Lee, Won-Young
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.482-489
    • /
    • 2009
  • We investigated how supercritical $CO_2$ affected sterilization and enzyme inactivation in dongchimi, a conventional Korean fermented food. The growth of bacteria, including lactic acid bacteria, in dongchimi juice tended to decrease with increased pressure and temperature during treatment with supercritical $CO_2$. D values were affected by pressure more than by temperature. The lowest total number of cells and D values of lactic acid bacteria were observed after treatment with supercritical $CO_2$ at 25 MPa and $25^{\circ}C$; these conditions also reduced polygalacturonase activity in radishes by approximately 40.3%. Supercritical $CO_2$ can be used as an alternative method of sterilization and enzyme inactivation, minimizing sensory loss and textural changes in vegetable materials.

Performance Analysis of Once-through HRSG and Steam Turbine System (관류형 열회수 증기발생기와 증기터빈 시스템의 성능해석)

  • Yang, J.S.;Kim, T.S.;Ro, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.872-877
    • /
    • 2001
  • This study analyzed the design performance of the bottoming system of combined cycle power plants adopting a single-pressure once-through heat recovery steam generator with reheat. A computer program was constructed and parametric analyses were carried out to present the criteria for determining the reheat pressure and the location of the starring point of the reheater in the HRSG. The performance of the bottoming system was presented for the range from high subcritical to supercritical pressures. It was founded that the power of the bottoming system can be as high as that of the present triple-pressure bottoming system even with a higher exhaust gas temperature. A requirement for this high performance is a proper arrangement of the reheater.

  • PDF

Sorption Equilibria of C. I. Disperse Yellow 54 Dye between Supercritical Carbon Dioxide and PTT and PET Textiles (초임계이산화탄소와 PTT및 PET섬유 사이에서 C. I. Disperse Yellow 54 염료의 수착평형)

  • Ihm, Bang-Hyun;Choi, Jun-Hyuck;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.173-179
    • /
    • 2007
  • In this study the amount of equilibrium sorption of C.I. Disperse Yellow 54 dye in the polymeric textiles such as PTT (poly(trimethylene terephthalate)) and PET (poly(ethylene terephthalate)) textiles was measured in the presence of supercritical carbon dioxide at different temperatures, pressures, and time. The amount of dye sorption increased with temperature and pressure in both PTT and PET textiles, but the increasing rate decreased with pressure. The PTT textile has much larger dye sorption than PET textile. The increasing rate of dye sorption decreased with time at same temperature and pressure for both PTT and PET textiles.

  • PDF