• Title/Summary/Keyword: Supercritical Fluid

Search Result 391, Processing Time 0.03 seconds

Extraction of Resveratrol Containing Grade Seed Oil with Supercritical Carbon Dioxide (초임계 이산와탄소를 이용한 Resveratrol 함유 포도씨유 추출)

  • Woo Moon Jae;Seo Jang-Won;Byun Sang Yo
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.383-386
    • /
    • 2005
  • Grape seed oil made by press or organic solvent extraction does not contain resveratrol, a bioactive compound. Supercritical carbon dioxide could extract oil containing resveratrol from grape seed. The extraction efficiency was mainly dependent on the water content in grape seed. More resveratrol was contained in the oil extracted with un-dried grape seed. No resveratrol was extracted with dried grape seed. Time course changes of grape seed oil extraction also resulted that resveratrol could be extracted by supercritical carbon dioxide with the positive influence of water.

Modifier Effects on Supercritical $CO_2$ Extraction Efficiency of Cephalotaxine from Cephalotaxus wilsoniana Leaves

  • Choi, Young-Hae;Kim, Jinwoong;Kim, Jin-Yeol;Joung, Seung-Nam;Yoo, Ki-Pung;Chang, Yuan-Shun
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.163-166
    • /
    • 2000
  • The effects of modifiers such as methanol, water diethylamine in methanol (10 v/v %), and diethylamine in water (10 v/v %) were investigated at three different concentrations (1, 5, and 10 v/v %) of the modifiers in supercritical $CO_2$ (SC-$CO_2$) in order to enhance the supercritical fluid extraction (SFE) efficiency of cephalotaxine from Cephalotaxus wilsoniana Leaves. Among the modifiers employed, methanol basified with diethylamine was found to greatly enhance the extraction efficiency relative to any other modifiers employed. The results suggest that cephalotaxine in plant matrices may be readily changed from SC-$CO_2$-insoluble salt to SC-$CO_2$-soluble free base by basified modifiers. In addition, SC-$CO_2$modified with basified methanol could enhance the extraction efficiency of cephalotaxine more than 30% when compared to the conventional organic solvent extraction.

  • PDF

Experimental Study on the Heat Transfer Characteristics under the Supercritical Pressures (초임계압 열전달 특성에 관한 실험 연구)

  • Kang, Kyoung-Ho;Youn, Young-Jung;Park, Jong-Kuk;Choo, Yeon-Jun;Chun, Se-Young;Song, Chul-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2242-2247
    • /
    • 2008
  • A series of experiments have been performed in a vertical tube of 9.4 mm inner diameter using the Freon, HFC-134a as working fluid medium under the supercritical pressure range. Two kinds of experiments, i.e. steady-state and pressure transient, have been carried out. As for the steady-state heat transfer experiment, the mass flux was in the range between 600 and $2000\;kg/m^2s$ and the maximum heat flux was $160\;kW/m^2$. The selected pressures were 4.1, 4.3 and 4.5 MPa which correspond to 1.01, 1.06 and 1.11 times the critical pressure, respectively. In the pressure transient experiments, the inlet pressures were varied from 3.8 to 4.5 MPa and vice versa in the pressure transient simulations. In this study, heat transfer correlation and criterion for the heat transfer deterioration are suggested under the supercritical pressures. And also heat transfer characteristics during the pressure transient are examined.

  • PDF

CRITICAL FLOW EXPERIMENT AND ANALYSIS FOR SUPERCRITICAL FLUID

  • Mignot, Guillaume;Anderson, Mark;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.133-138
    • /
    • 2008
  • The use of Supercritical Fluids(SCF) has been proposed for numerous power cycle designs as part of the Generation IV advanced reactor designs, and can provide for higher thermal efficiency. One particular area of interest involves the behavior of SCF during a blowdown or depressurization process. Currently, no data are available in the open literature at supercritical conditions to characterize this phenomenon. A preliminary computational analysis, using a homogeneous equilibrium model when a second phase appears in the process, has shown the complexity of behavior that can occur. Depending on the initial thermodynamic state of the SCF, critical flow phenomena can be characterized in three different ways; the flow can remain in single phase(high temperature), a second phase can appear through vaporization(high pressure low temperature) or condensation(high pressure, intermediate temperature). An experimental facility has been built at the University of Wisconsin to study SCF depressurization through several diameter breaks. The preliminary results obtained show that the experimental data can be predicted with good agreement by the model for all the different initial conditions.

EXPERIMENTAL INVESTIGATIONS ON HEAT TRANSFER TO CO2 FLOWING UPWARD IN A NARROW ANNULUS AT SUPERCRITICAL PRESSURES

  • Kim, Hwan-Yeol;Kim, Hyung-Rae;Kang, Deog-Ji;Song, Jin-Ho;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Heat transfer experiments in an annulus passage were performed using SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation), which was constructed at KAERI(Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical $CO_{2}$. $CO_{2}$ was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 $kg/m^{2}s$ and the heat flux was chosen at rates up to 150 $kW/m^{2}$. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.

Optimum process conditions for supercritical fluid and co-solvents process for the etching, rinsing and drying of MEMS-wafers (초임계 유체와 공용매를 이용한 미세전자기계시스템 웨이퍼의 식각, 세정을 위한 최적공정조건)

  • Noh, Seong Rae;You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study aims to select suitable co-solvents and to obtain optimal process conditions in order to improve process efficiency and productivity through experimental results obtained under various experimental conditions for the etching and rinsing process using liquid carbon dioxide and supercritical carbon dioxide. Acetone was confirmed to be effective through basic experiments and used as the etching solution for MEMS-wafer etching in this study. In the case of using liquid carbon dioxide as the solvent and acetone as the etching solution, these two components were not mixed well and showed a phase separation. Liquid carbon dioxide in the lower layer interfered with contact between acetone and Mems-wafer during etching, and the results after rinsing and drying were not good. Based on the results obtained under various experimental conditions, the optimum process for treating MEMS-wafer using supercritical CO2 as the solvent, acetone as the etching solution, and methanol as the rinsing solution was set up, and MEMS-wafer without stiction can be obtained by continuous etching, rinsing and drying process. In addition, the amount of the etching solution (acetone) and the cleaning liquid (methanol) compared to the initial experimental values can be greatly reduced through optimization of process conditions.

  • PDF

Static Supercritical Fluid Extraction of PCBs from Soil Matrix (정적 초임계유체 방식에 의한 토양 중의 PCBs 추출)

  • Ryoo, Keon-Sang;Lee, Won-Kyoung;Hong, Yong-Pyo;Oh, In-Gyung;Kim, Yong-Gyun
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.578-584
    • /
    • 2003
  • Polychlorinated biphenyls (PCBs) known as environmental contaminants in soil were analyzed by the soil pollution standard process test and the static supercritical $CO_2$ extraction mode. It was shown that the percent average recoveries of PCBs by the soil pollution standard process test were ranged in 25-35% and the corresponding standard deviations were above 10%. In contrast, the percent average recoveries of PCBs by the static supercritical $CO_2$ extraction mode were 2-2.5 times higher and standard deviations were within 7%. These results indicate that static supercritical $CO_2$ extraction mode may be a useful alternative to sample pretreatment certified by the soil pollution standard process test. The increasing supercritical $CO_2$ pressure from 1130 psi to 1996 psi at $40^{\circ}C$ enhanced the recovery of all PCB congeners from soil. However, at same Tc and Pc, the equilibrium time (5 versus 60 minutes) had no effect on the recovery of each PCB congener. Finally, similar PCB recoveries were obtained under the same extraction condition, regardless of the molecular weight and structure (coplanar versus non-coplanar) of PCB congeners.

Studies on the Recovery of Triglyceride from Used Shortening by Supercritical Fluid Extraction (초임계유체 추출에 의한 폐식용유의 재활용에 대한 기초연구)

  • Han, Byung-Seok;Yoon, Jung-Ro;Kwon, Young-An;Jung, Mun-Yhung;Kim, Kong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1300-1307
    • /
    • 1999
  • Supercritical fluid extraction was applied to recycling triglyceride from used shortening. Used shortening and its fractions were analyzed with high performance size exclusion chromatography for their composition in triglycerides, polymer and low molecular weight compounds. Conjugated diene value and color of the fractions were also measured with a UV spectrophotometer and a colorimeter, respectively. Pressure and temperature ranges employed were $15{\sim}30$ MPa and $40{\sim}60^{\circ}C$, respectively. Concentration of fat in supercritical (SC) $CO_2$ ranged from $0.3\;X\;10^{-3}{\sim}7.4\;X10^{-3}(g\;fat/g\;CO_2)$. An exponential relation between concentration of fat in SC $CO_2$ and density was observed. Color of the extracts was light yellow which was very close to that of the fresh shortening. Low molecular weight compounds were preferentially concentrated in the initial fraction, while polymer was extracted in the final fraction. Conjugated diene value of the initial fractions was clearly lower than that of feed. It increased sharply as the polymer content in the fraction became significantly large.

  • PDF

Optimization of Supercritical Fluid Extraction of Tocotrienol from Grape Seed (초임계유체 추출을 이용한 포도씨 tocotrienol 추출조건 최적화)

  • Kim, Kyeong-Mi;Woo, Koan Sik;Hwang, In-Guk;Lee, Youn-Ri;Lee, Jun-Soo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.37-41
    • /
    • 2009
  • In this study, supercritical carbon dioxide extraction (SFE) was utilized for the extraction of tocotrienol from grape seeds. The optimal conditions for vitamin E and tocotrienol extraction were determined via response surface methodology (RSM). Central composite design was utilized to assess the effects of oven temperature (30-$50^{\circ}C$, X1), operating pressure (17-25 MPa, X2), and extraction time (1-5 hr, X3) of supercritical fluid extraction. Vitamin E and tocotrienol contents were 8.65 mg/100 g and 7.88 mg/100 g at $40^{\circ}C$, 20MPa and 5 hr, respectively. The predicted extraction condition was validated via actual experimentation. The predicted extraction conditions were $40^{\circ}C$, 3.8 hr, and 20.7MPa. The vitamin E and tocotrienol contents under these conditions were 8.20 mg/100 g and 7.42 mg/100 g, respectively. The vitamin E and tocotrienol contents of solvent extraction with hexane were 8.18 mg/100 g and 7.24 mg/100 g, respectively.