• Title/Summary/Keyword: Supercritical Conditions

Search Result 242, Processing Time 0.025 seconds

Preparation of $Pt/TiO_2/Nafion$ Electrolyte Membrane for Self-humidifying membrane of PEMFC (연료전지의 자가 가습 $Pt/TiO_2/Nafion$ 전해질막의 제조)

  • Byun, Jung-Yeon;Kim, Hyo-Won;Ju, Min-Cheol;Kim, Hwang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.201-204
    • /
    • 2007
  • A novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC) at low humidity condition was developed. The $Pt/TiO_2 catalyst particles were synthesized via supercritical impregnation methods. Pt precursor was dissolved in supercritical carbon dioxide and impregnated onto $TiO_2$ particles. Pt precursors were platinum(II) acetylacetonate, Dimethyl(1,5-cyclooctadiene) platinum(II) and we controlled the ratio of Pt to $TiO_2$ The impregnated Pt precursor was converted to $TiO_2$ supported Pt nanoparticle under various reducing conditions. $TiO_2$ catalyst particles were dispersed uniformly into the Nafion solution, and then $Pt/TiO_2/Nafion$composite membrane was prepared using solution-cast method. The size, dispersion and content of the platinum had been characterized with Transmission Electron Micrograph (TEM), X-ray diffract ion (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). The cell performance with the self-humidifying composite membrane was compared with a recast Nafion membrane under both humidified and dry conditions at 65 $^{\circ}C$.

  • PDF

Unsteady Flow Analysis through the Subcritical-Supercritical Transition Region (개수로에서의 상류-사류 천이영역에 대한 부정류 해석)

  • 한건연;박재홍;이종태
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Numerical instability of Preissmann scheme is studied for unsteady flow analysis in a natural river. The solution strategies to overcome the instability problems are presented in this paper. The main causes of numerical instability of Preissmann scheme are transition flow, abrupt change in cross section, in-appropriate roughness coefficients, time step and distance step, rapidly rising hydrograph, dry bed and so on. Transition flow model is proposed for the analysis of the transition flow which changes from subcritical to supercritical or conversely. The subcritical and supercritical reaches are groped in the channel, then appropriate boundary conditions are introduced for each reach. The transition flow analysis produces stable solutions in calculating through the various transition conditions. Verification with an actual river system is necessary in the future.

  • PDF

Effects of Modifiers on the Supercritical $CO_2$ Extraction of Licorice (Glycyrrhiza glabra) and the Morphology of Licorice Tissue

  • Kim, Hyun-Seok;Lim, Gio-Bin;Kim, Byung-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.6-10
    • /
    • 2005
  • Optimal extraction conditions such as pressures, temperatures, and modifiers on glycyrrhizin extraction from licorice were investigated using supercritical $CO_2\;(SC-CO_2)$ at 3 mL/min flow rate. Morphology of licorice tissue, after glycyrrhizin extraction, was examined by SEM, and absolute density ($g/cm^3$) measurement and glycyrrhizin content were determined by HPLC. Pure $SC-CO_2$ had no effect on glycyrrhizin extraction, but recovery of glycyrrhizin ($32.66{\pm}0.77%$) was enhanced when water was used as modifier. The highest recovery was $97.22{\pm}2.17%$ when 70% (v/v) aqueous methanol was added to 15% (v/v) $SC-CO_2$ at 50 MPa and $60^{\circ}C$. Under optimal extraction conditions, 30 MPa pressure and $60^{\circ}C$ heating temperature, glycyrrhizin recovery reached maximum ($102.67{\pm}1.13%$) within 60 min. Licorice tissue was severely damaged by excessive swelling, and absolute density of licorice residues was highest when aqueous methanol was used as a modifier.

Copolymerization of L-Lactide and ${\varepsilon}$-Caprolactone in Supercritical Fluid

  • Prabowo, Benedictus;Choi, Dong-Hoon;Kim, Soo-Hyun
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.575-579
    • /
    • 2009
  • Copolymerization of L-lactide and s-caprolactone initiated by tin (II) octoate (Sn(Oct)$_2$) was carried out in supercritical chlorodifluoromethane (R22) with varying reaction conditions (time and temperature) and amounts of monomer and catalyst, under a pressure of 250 bar. The optimum conditions were a reaction time of 10 h and a temperature of 130 $^{\circ}C$, which is similar to the temperature used in bulk copolymerization system. The conversion increased from 56% to 76% by increasing the reaction time from 1 to 10 h. The molecular weight also increased to 75,900 g.mol$^{-1}$ over the same period, while the increased monomer concentration resulted in a high molecular weight of 86,400 g.mol$^{-1}$ and a monomer conversion of 84%. Raising the reaction temperature from 90 to 130 $^{\circ}C$ increased the monomer conversion as well as the poly-L-lactide-co-${\varepsilon}$-caprolactone (PLCL) molecular weight. The variation on the stannous octoate catalyst suggested that less catalyst would decrease the caprolactone content of the polymer.

The optimization for the straight-channel PCHE size for supercritical CO2 Brayton cycle

  • Xu, Hong;Duan, Chengjie;Ding, Hao;Li, Wenhuai;Zhang, Yaoli;Hong, Gang;Gong, Houjun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1786-1795
    • /
    • 2021
  • Printed Circuit Heat Exchanger (PCHE) is a widely used heat exchanger in the supercritical carbon dioxide (sCO2) Brayton cycle because it can work under high temperature and pressure, and has been a hot topic in Next Generation Nuclear Plant (NGNP) projects for use as recuperators and condensers. Most previous studies focused on channel structures or shapes. However, no clear advancement has so far been seen in the allover size of the PCHE. In this paper, we proposed an optimal size of the PCHE with a fixed volume. Two boundary conditions of PCHE were simulated, respectively. When the volume of PCHE was fixed, the heat transfer rate and pressure loss were picked as the optimization objectives. The Pareto front was obtained by the Multi-objective optimization procedure. We got the optimized number of PCHE channels under two different boundary conditions from the Pareto front. The comprehensive performance can be increased by 5.3% while holding in the same volume. The numerical results from this study can be used to improve the design of PCHE with straight channels.

Quality and characteristics of ginseng seed oil treated using different extraction methods

  • Lee, Myung-Hee;Kim, Sung-Soo;Cho, Chang-Won;Choi, Sang-Yoon;In, Gyo;Kim, Kyung-Tack
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.468-474
    • /
    • 2013
  • Ginseng seed oil was prepared using compressed, solvent, and supercritical fluid extraction methods of ginseng seeds, and the extraction yield, color, phenolic compounds, fatty acid contents, and phytosterol contents of the ginseng seed oil were analyzed. Yields were different depending on the roasting pretreatment and extraction method. Among the extraction methods, the yield of ginseng seed oil from supercritical fluid extraction under the conditions of 500 bar and $65^{\circ}C$ was the highest, at 17.48%. Color was not different based on the extraction method, but the b-value increased as the roasting time for compression extraction was increased. The b-values of ginseng seed oil following supercritical fluid extraction were 3.54 to 15.6 and those following compression extraction after roasting treatment at $200^{\circ}C$ for 30 min, were 20.49, which was the highest value. The result of the phenolic compounds composition showed the presence of gentisic acid, vanillic acid, ferulic acid, and cinnamic acid in the ginseng seed oil. No differences were detected in phenolic acid levels in ginseng seed oil extracted by compression extraction or solvent extraction, but vanillic acid tended to decrease as extraction pressure and temperature were increased for seed oil extracted by a supercritical fluid extraction method. The fatty acid composition of ginseng seed oil was not different based on the extraction method, and unsaturated fatty acids were >90% of all fatty acids, among which, oleic acid was the highest at 80%. Phytosterol analysis showed that ${\beta}$-sitosterol and stigmasterol were detected. The phytosterol content of ginseng seed oil following supercritical fluid extraction was 100.4 to 135.5 mg/100 g, and the phytosterol content following compression extraction and solvent extraction was 71.8 to 80.9 mg/100 g.

Effects of Supercritical Carbon Dioxide on Sterilization and Enzyme Inactivation in Dongchimi (초임계 이산화탄소의 동치미 살균 및 효소 불활 효과)

  • Park, Joo-Seok;Hong, Joo-Heon;Lee, Won-Young
    • Food Science and Preservation
    • /
    • v.16 no.4
    • /
    • pp.482-489
    • /
    • 2009
  • We investigated how supercritical $CO_2$ affected sterilization and enzyme inactivation in dongchimi, a conventional Korean fermented food. The growth of bacteria, including lactic acid bacteria, in dongchimi juice tended to decrease with increased pressure and temperature during treatment with supercritical $CO_2$. D values were affected by pressure more than by temperature. The lowest total number of cells and D values of lactic acid bacteria were observed after treatment with supercritical $CO_2$ at 25 MPa and $25^{\circ}C$; these conditions also reduced polygalacturonase activity in radishes by approximately 40.3%. Supercritical $CO_2$ can be used as an alternative method of sterilization and enzyme inactivation, minimizing sensory loss and textural changes in vegetable materials.

Structural Characteristics of Graphene Prepared in Supercritical Fluids and Thermal Conductivity of Graphene/Epoxy Composites (초임계유체 조건에서 제조된 그래핀의 구조분석과 그래핀/에폭시 수지조성물의 열전도 특성)

  • Oh, Weontae;Choi, Gyuyeon
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.277-282
    • /
    • 2021
  • Graphene oxide can be reduced to graphene under supercritical fluid condition even without using a specific reducing agent or applying a high thermal process. In this study, a process for converting graphene oxide into graphene was studied under supercritical fluid conditions in methanol and ethanol solvents. When the structure of asprepared graphene was analyzed by using FE-SEM and XRD, the reduction of graphene oxide in supercritical fluid condition was more affected by the change of solvent than other variables such as concentration of graphene oxide and reaction time. The use of ethanol showed better results for the reduction than the use of methanol. The graphene prepared in this study was mixed with epoxy resin up to 20 wt.% to make composites, and the thermal conductivity of the composites were analyzed. Thermal conductivity of the composite increased proportionally with graphene loadings. The graphene prepared in supercritical ethanol condition was more effective on the thermal conductivity of the composite.

Effect of Divergent Trailing Edge Modification of Supercritical Airfoil in Transonic Flow (천음속유동에서 초임계익형 후연확대수정의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.183-189
    • /
    • 1997
  • The computation of the flow around a supercritical airfoil with a divergent trailing edge(DTE) modification(DLBA 243) is compared to that of original supercritical airfoil(DLBA 186). For this computation, Reynolds-Averaged Navier-Stokes equations are solved with a linearized block implicit ADI method and a mixing length turbulence model. Results show the effects of the shock and separated flow regions on drag reduction due to DTE modification. Results also show that DTE modification accelerates the boundary layer flow near the trailing edges which has an effect similar to a chordwise extension that increases circulation and is consistent with the calculated increase in the recirculation region in the wake. Airfoil with DTE modification achieves the same lift coefficient at a lower incidence and thus at a lower drag coefficient, so that lift-to-drag ratio is increased in transonic cruise conditions compared to the original airfoil. The reduction in drag due to DTE modification is associated with weakening of shock strength and delay of shock which is greater than the increase in base drag.

  • PDF

Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition

  • Heo, Jun-Young;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.254-263
    • /
    • 2015
  • In this study, numerical simulations are carried out to investigate the dynamic SGS model effects in a Kerosene-LOx coaxial swirl injector under high pressure conditions. The turbulent model is based on large-eddy simulation (LES) with real-fluid transport and thermodynamics. To assess the effect of the dynamic subgrid-scale (SGS) model, the dynamic SGS model is compared with that of the algebraic SGS model. In a swirl injector under supercritical pressure, the characteristics of temporal pressure fluctuation and power spectral density (PSD) present comparable discrepancies dependant on the SGS models, which affect the mixing characteristics. Mixing efficiency and the probability density (PDF) function are conducted for a statistical description of the turbulent flow fields according to the SGS models. The back-scattering of turbulent kinetic energy is estimated in terms of the film thickness of the swirl injector.