• Title/Summary/Keyword: Superconducting motor

Search Result 103, Processing Time 0.021 seconds

Test results of a 5 kW fully superconducting homopolar motor

  • Lee, J.K.;Park, S.H.;Kim, Y.;Lee, S.;Joo, H.G.;Kim, W.S.;Choi, K.;Hahn, S.Y.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권1호
    • /
    • pp.35-39
    • /
    • 2013
  • The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

고온초전도 회전계자형 동기전동기의 3차원 동특성 해석 (Three Dimensional Dynamic Analysis of High-Tc Superconducting Revolving Field Type Synchronous Motor)

  • 이상진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.438-441
    • /
    • 1999
  • One of the most important aspect in developing High-Tc Superconducting Synchronous Motor is producing high-Tc superconducting tapes that withstand the amount of currents that is needed to run the motor with stability. The purpose of this paper is to find the magnetic field distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation. With this goal, magnetic field distribution in a detailed model of the actual motor was analyzed through F.E.M. By analyzing the field distribution acquired through the computer simulation, it has been observed whether the high-Tc superconducting tape maintains its superconductivity in actual motor operation. Also, the effects of the flux damper on the motor's operational characteristics and the magnetic field distribution have been analyzed. As a result, it has been proved that the high-Tc superconducting tapes can withstand 600 A turns which is required by the previous simulation aimed at developing this motor. It has also seen that the flux damper reduces armature reactance during the motor operation and change of load, helping the stable motor operation.

  • PDF

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

고온초전도동기모터의 자계분포해석에 따른 테이프선재의 안정도해석 (Stability Analysis Of High-Tc Superconducting Tape Through Magnetic Field Analysis Of The High-Tc Superconducting Synchronous Motor)

  • 송명곤;장원갑;윤용수;문창욱;홍계원;이상진;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
    • /
    • pp.81-84
    • /
    • 1999
  • The purpose of this paper is to find the magnetic field distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation. With this gola, magnetic field distribution in a detailed model of the actual motor was analyzed through F.E.M. (Finite Element Method). As a result, it has been proved that the high-Tc superconducting tapes can withstand 4 A of current with stability. 4 A was the amount of current needed to achieve 600 A ·turns which is required by the previous simulation aimed at developing this motor. Also, it has been observed that the flux damper reduces armature reactance during the motor operation and during load changes, helping the stable motor operation. But, it was observed that the flux damper generates loss by means of leakage flux and this decreases the output of the motor by about 5%.

  • PDF

고온초전도 벌크 베어링을 사용한 유도 전동기의 특성 시험 (Performance Tests of an Induction Motor with Hexahedron HTS Bulk Bearing)

  • 임형우;이광윤;박명진;차귀수;이지광
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권6호
    • /
    • pp.286-290
    • /
    • 2003
  • The high temperature superconducting bulk can be used as the bearing of induction motors. This paper presents the fabrication and test results of an induction motor with superconducting bearings using HTS bulks. The bearing had eight hexahedron type YBCO bulks. Height, width and thickness of the HTS bulk were 30mm, 30mm and 10mm, respectively. Single phase induction motor was used to drive the shaft made of aluminum and the rotor of a conventional induction motor. To estimate the performance of the HTS bulk magnetic bearing, no load test, load test and Impact test were carried out. Load tests were performed by using air resistance caused by the shaft-mounted thin cylinder with buckets. Impact tests by axial direction and vertical direction impact showed that the vibration of the shaft gradually decayed. The induction motor with HTS bulk magnetic bearing rotated silently and smoothly throughout the tests. According to the test results, conventional bearings can be replaced with superconducting magnetic bearings made of HTS bulks.

고온초전도동기모터의 자계분포해석에 따른 테이프선재의 안정도해석 (Srability Analysis Of High-Tc Superconducting Tape Through Magnetic Field Analysis Of The High-Tc Superconducting synchronous Motor)

  • 송명곤;윤용수;홍계원;이산진;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권2호
    • /
    • pp.25-29
    • /
    • 1999
  • The purpose of this paper is to find the magnetic filed distribution inside the motor in order to find out if the high-Tc superconducting tapes operate stably in actual motor operation in a detailed model of the actual motor was analyzed through F.E.M.(finite Element Method). As a result, it has been proved that the high-Tc superconducting tapes can with-stand 4 A of current with staility. 4 A was the amount of current with stability. 4 A was the amount of current needed to achieve 600 A·turns which is required by the previous simulation aimed at developing this the flux damper reduces armature reactance during the motor operation. But it was observed that the flux damper generates loss by means of leakage flux and this decreases the output of the motor by about 5%.

  • PDF

손실을 고려한 초전도 동기전동기 설계 (Superconducting Synchronous Motor Design considering Machine Losses)

  • 백승규;손명환;김석환;권영길
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권2호
    • /
    • pp.21-26
    • /
    • 2001
  • Superconducting synchronous generators and motors are designed based on 2 dimensional electro-magnetic approach. In the case of generator, if the machine output rating and terminal voltage are decided the armature rating current will be decided automatically according to its power factor. However, in the case of motor, if the output rating is given with [hp] or [kw] units, the armature terminal voltage and current are not decided directly because the machines armature input power and mechanical output are different by way of losses. So in order to calculate the armature current more accurately. the machine losses must be included in the design procedure. In this paper the machine loss of superconducting motor are analyzed and used for decision of the armature input power and current. Moreover, the differences of voltage equations between superconducting synchronous generator and motor are considered.

  • PDF

초전도 모터의 상태진단을 위한 데이터 신호 무선처리 기법개발 (Development of the Wireless Technique for Health Monitoring of Superconducting Motor)

  • 서경철;이민래;이준현;권영길;손명환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.829-834
    • /
    • 2004
  • This research is to development advanced health(condition) monitoring system of superconducting motors. Development of advanced condition monitoring systems offers the prospect of improved performance, assessment, and operation, simplified design, enhanced safety, and reduced overall cost of advanced and next generation superconducting motor. For advanced and next generation superconducting motor design, the opportunity exists to develop and implement real-time and continuous monitoring systems by integrating wireless and computational technique. Generally, condition monitoring and control of temperature is essential for managing the superconducting motor components, rotor and structures. In this research, development of advanced monitoring in low temperature and high speed operating environments offers the potential to greatly improve the control of harsh environments. In conventional method, slip rings have been used to acquire data from these sensors. However, the increase of sensors leads to vibration of the rotation axis and noise signals due to kinematics contact. In this study, the wireless data acquisition technique was employed to develop more stable monitoring system adequate for high speed rotating system.

  • PDF

Conceptual Design of a 10 HP Homopolar Motor with Superconducting Windings

  • Park, Sang-Ho;Kim, Yun-Gil;Lee, Se-Yeon;Choi, Kyeong-Dal;Hahn, Song-Yop;Lee, Ji-Kwang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권2호
    • /
    • pp.9-12
    • /
    • 2011
  • Superconducting motor has a lot of benefits from high power density for ship propulsions, so a number of research project are in progress worldwide. Despite of all the benefits, there is always a difficulty of cryo-moving part for conventional air-core superconducting synchronous motors. In order to get rid of this moving cryogenic part, we propose a homopolar superconducting synchronous motor, which has high temperature superconducting armature and field coils. The rotor is supposed to be made of iron only and excited by the stationary HTS field coils. The stationary field coils make the cooling system simple and easy to realize because there is no cryo-moving part. A design result of a 10 hp homopolar synchronous motor is presented in this paper. The self and mutual inductance of the motor having the size of air gap as variable parameter are calculated by a 3-dimemsional finite element method. The value of design variables such as the dimension of a motor and the number of turns, etc. is decided by performing the coordinate transformation of the calculated inductance. The operating frequency is supposed to be below 5 Hz for low rotating speed which is needed for a purpose of ship propulsion. Low frequency also has the benefit of low AC losses.

계자 철심형 초전도 전동기 개념 설계 및 특성 해석 (Conceptual Design and Characteristic Analysis of a Superconducting Motor using Iron Cores in the Field)

  • 이상호;권순오;홍정표;권영길
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권3호
    • /
    • pp.14-18
    • /
    • 2008
  • This paper deals with the conceptual design and characteristic analysis of core type superconducting motor using iron cores in the field. As the objective function of conceptual design, the flux quantity per pole is selected. In order to reduce the quantity of superconductors, the variations of flux quantity per pole by changing the design variables and area are investigated. Finally, the quantity of superconductors between air-cored and core type superconducting motor is compared under the same motor capacity. In addition, the dimensions and volumes of motors are compared.