• Title/Summary/Keyword: Superconducting Fault Current Limiters

Search Result 117, Processing Time 0.023 seconds

Operation and Configurgation of Superconducting Machines and Devices in Utility System (초전도전력설비의 구성 및 운전)

  • 홍원표;이원규;곽희로
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.116-121
    • /
    • 1996
  • An image of future power system which has introduced superconducting generator, cable, transformer, fault current limiter, SMES and so on is presented. Conceptual designs of each SC machines and devices are carried out. The SC cable and SFCL utilize the high Tc superconductor(HTS) cooled by liquid $N_2$Other devices use low temperature superconducting cooled by He. The SC power system models are proposed detailedly. In viewpoint of the operation and control SC power system, The concrete design direction and effective role of each SC apparatus are investigated. In this paper, it is pointed that superconducting fault limiters(SFCLs) should play an important part of the quenching current level coordination to prevent the other SC devices from quenching. Finially, SFCL are also expected to he very effective to introduce flexibility of power system configuration and operation due to their possibility to enhance transient stability and reduce short circuit current.

  • PDF

Hybrid Superconducting Fault Current Limiters for Distribution Electric Networks (하이브리드 방식을 적용한 배전급 초전도 한류기 개발)

  • Lee, B.W.;Park, K.B.;Sim, J.;Oh, I.S.;Lim, S.W.;Kim, H.R.;Hyun, O.B.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.102-103
    • /
    • 2007
  • In order to apply resistive superconducting fault current limiters into electric power systems, the urgent issues to be settled are as follows, such as initial installation price of SFCL, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. The ac loss and high cost of superconductor and cryostat system are main bottlenecks for real application. Furthermore in order to increase voltage and current ratings of SFCL, a lot of superconductor components should be connected in series and parallel which resulted in extreme high cost. Thus, in order to make practical SFCL, we designed novel hybrid SFCL which combines superconductor and conventional electric equipment including vacuum interrupter, power fuse and current limiting reactor. The main purpose of hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of superconductor and high fast switch. Consequently, it was possible to get the satisfactory test results using this method, and further works for practical applications are in the process.

  • PDF

Fabrication and Test of the 3.8 ㎸ Resistive SFCL Based on YBCO Films (3.8 ㎸급 7직렬 저항형 고온초전도한류기의 제작 및 시험)

  • 심정욱;김혜림;현옥배;박권배;이방욱;강종성;오일성
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.136-140
    • /
    • 2004
  • We fabricated and tested a resistive superconducting fault current limiters (SFCL) operated at 3.8 ㎸ based on YBCO thin films. The SFCL was composed of 7 components connected in series. Each component was designed to be capable of current limiting at 600 V, and has a SiC shunt resistor ( $R_{s}$) of 40 Ω in Parallel. Short circuit tests were carried out fur 0 and 90 degree faults lasting fur 5 cycles. The test results showed that the 7 components were quenched simultaneously under the safe quenches and evenly shared the applied voltage. The SFCL successfully suppressed the fault currents below 94 $A_{peak}$ within the quarter cycle after fault.t.t.

  • PDF

Analysis of Transient Characteristics of a SFCL Applied Into Third-winding Transformer in a Single Line-to-ground Fault (1선 지락 사고 시 3 권선 변압기에 적용된 초전도 한류기의 동작 특성 분석)

  • Choi, Hye-Won;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1033-1037
    • /
    • 2013
  • Coercion transformer is commonly used in the electrical grid which in three phase of distribution system. The accident of the electrical grid is divided into a single, a double, a third line-to-ground faults and a double, a third line-to-line faults. A single line-to-ground fault accounts for nearly 75[%] among them. In this research, when a Superconducting Fault Current Limiters (SFCL) was applied to the three phase power system, operation in a single line-to-ground fault and limiting characteristics of fault current according to turns ratio of third winding were analyzed. When a single line-to-ground fault happened, secondary winding's circuit was open. Then third winding's circuit with a SFCL was closed. So fault current was limited by diverted circuit. At this time, we could find out that size of the limited fault current could be changed according to third winding rate. We confirmed that limiting operation of the fault current was carried out within one-period. These results will be utilized in adjusting the size of the SFCL.

Design and Characterization of a Reactor for Matrix Type SFCLs Using Electromagnetic Field Analysis (전자장 해석을 통한 매트릭스형 한류기용 리액터 설계 및 특성해석)

  • Chung, Dong-Chul;Yun, Chang-Hun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.227-230
    • /
    • 2009
  • In this paper, we performed the optimum design of reactors for matrix-type superconducting-fault current limiters (SFCLs), using electromagnetic analysis tools. We decided a optimun position within a reactor for superconducting elements of current-limiting parts and trigger parts from the calculation of magnetic flux internsity for reactor structures. Also we decided effective distance length between two reactors through the analysis of the distribution of magnetic field, according to distance lengths between them. We designed and characterized matrix-type SFCLs, based on our optimum design of a reactor. We confirmed uniform distribution of a fault current, resulted from the improvement of simultaneous quench characteristics within our matrix-type SFCL.

Fault Current Limitation Characteristics of the Bi-2212 Bulk Coil for Distribution-class Superconducting Fault Current Limiters (배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성)

  • Sim, Jung-Wook;Lee, Hai-Gun;Yim, Sung-Woo;Kim, Hye-Rim;Hyun, Ok-Bae;Park, Kwon-Bae;Lee, Bang-Wook;Oh, Il-Sung;Kim, Ho-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.277-281
    • /
    • 2007
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter (SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of $200V_{rms}$ and fault current of $12kA_{rms}\;and\;25kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of $12kA_{rms}\;and\;25kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}\;within\;0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLS.

Design of Superconducting Elements for the 6.6kV 200A Superconducting Fault Current Limiter (6.6kV 200A 초전도 한류기용 초전도소자 설계)

  • Kang J.S.;LEE B.W.;Park K.B.;Oh I.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.518-520
    • /
    • 2004
  • In these days, there is a demand to develop fault current limiters(FCLs) to reduce excessive fault current and protect electrical equipments which are installed in the transmission and distribution power systems. We considered the resistive superconducting FCLs among the various kinds of FCLs. In this study, in order to develop the resistive superconducting FCL of 6.6kV 200A $3\phi$, we designed the new mask pattern for etching YBCO films by means of numerical analysis method, current limiting experiments and visualization of bubbles in films and investigated dielectric performance of the designed mask by using elecrtostatic numerical analysis method and breakdown experiments. We etched YBCO films by using the newly designed mask, connected the etched films in series and in parallel, and designed the 6.6kV resistive SFCL and then we observed the current limiting characteristics of the SFCL.

  • PDF

Characteristics of superconducting fault current limiters with various pattern shape (초전도 전류제한기의 패턴형상별 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, G.K.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.529-532
    • /
    • 2003
  • Quench behavior of resistive superconducting fault current limiters (SFCLs) with various pattern shapes was investigated. The pattern shapes employed were meander, bi-spiral, and spiral shapes of identical line width, gap and margin. SFCLs were fabricated from YBCO thin films grown on two-inch diameter $Al_2O_3$ substrates under the same conditions. Resistance rise of current limiting elements was low at a spiral shape before the whole quench completion, which may act as a disadvantage for simultaneous quench in serial connection between current limiting elements, but the temperature tended to have similar values at higher voltages. On the other hand, bi-spiral shape was severe at insulation level between current limiting lines. When these aspects were considered, we concluded that a meander shape was appropriate to design for a resistive SFCL based on thin films except the concentration of electric field at edge areas of strip lines.

  • PDF

Review of Typical Fault Current Limiter Types and Application Effect to Improve Power System Reliability (전력 계통 신뢰도 개선을 위한 대표적인 한류기 유형 및 적용 효과 분석)

  • Yun-Seok Ko;Woo-Cheol Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1133-1142
    • /
    • 2023
  • A rapid increase in power capacity in a power system can seriously reduce system reliability by causing the fault capacity to exceed the breaking capacity of circuit breaker. Fault current limiter is a practical and effective way to improve reliability by limiting fault capacity to the breaking capacity level. In this study, in order to help develop an application methodology when applying fault current limiters to power systems, first the topology and operating principles of each type of fault current limiters was reviewed, and the main advantages and disadvantages was compared. Next, to verify the effect of applying fault current limiter to the power system, the power system in which the fault current limiter was introduced was modeled. Finally, after simulating a three-phase short-circuit fault using EMTP-RV, the effect of application was verified by comparing the fault current before and after application of the fault current limiter and confirming that the fault current was reduced by the fault current limiter.