• Title/Summary/Keyword: Superconducting Coil

검색결과 403건 처리시간 0.026초

변압기 권선비의 변화에 따른 3상 DC 리액터형태 한류기의 단락실험 (Short Circuit Tests of the Three-Phase DC Reactor Type Fault Current Limiter in Changing of Turns Ratio of Transformers)

  • 이응로;이찬주;이승제;고태국;현옥배
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권6호
    • /
    • pp.267-272
    • /
    • 2002
  • This Paper deals with the short circuit tests of the three-Phase DC reactor type fault current limiter (FCL) in changing of turns ratio of transformers. The experiment of this paper is a preliminary step to develop the FCL's faculties for an application to high voltage transmission line. So, superconducting coil was made of Nb-Ti, low temperature superconductor, and the ratings of the power system of experimental circuit are 400V/7A class. A three-phase DC reactor type FCL consists of three transformers, six diodes, one superconducting coil and one cryostat. The important point of experimental analysis is transient period, the operating lagging time of circuit breaker. As the results of the experiment, the values are referred to the limitation rate about 77% and 90% when the turns ratio of transformer was 1:1 and 2:1 respectively.

코일 형태로 제작한 박막형 고온초전도 전류제한기의 특성 해석 (Characteristics of a Coil type Fault Curent Limiters using a High-Tc Superconducting Thin Film)

  • 정동철;최효상;박종광;임성훈;고건문;한병성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권8호
    • /
    • pp.418-423
    • /
    • 2000
  • In this paper, we reported the current limiting properties of superconducting fault current limiters (SFCL). Our SFCL was patterned in a coil-type on a YBCO film deposited using rf sputtering techniques and was coated with a gold shunt layer in order to disperse the heat generated at hot spots in the YBCO film. Current increased up to 13.5 Apeak at 60 Hz for the voltage of 11.5 Vpeak, which is the minimum quench point, and increased up to 17.6 Apeak at 60 Hz for the voltage of 80 Vpeak. The quench completion time was 5 msec at 11.5 Vpeak and 4 msec at 80 Vpeak respectively. We think that this architecture using coil-type SFCL can be useful for the protection of the power delivery systems from fault currents.

  • PDF

KSTAR 초전도자석계통 개발현황 (Present Status of the KSTAR Superconducting Magnet System Development)

  • 박현기;김기만;박갑래;임병수;이상일;정우호;추용;백설희
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.298-300
    • /
    • 2003
  • The KSTAR superconducting magnet system consists of 16 TF (Toroidal Field) and 14 PF (Poloidal Field) coils. Both of the TF and PF coil system use internally-cooled Cable-In-Conduit Conductors (CICC). The major achievement in KSTAR magnet system development includes the development of CICC, the development of a full size TF model coil, the development of a background magnetic field generation coil system, the construction of a large scale superconducting magnet. TF and PF coils are in the stage of the fabrication for the KSTAR completion in the year 2005.

  • PDF

Double pancake 코일 내부의 절연구성 연구 (Dielectric composition of the double pancake coil interior)

  • 정종만;백승명;곽동순;이정원;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2002
  • For insulation design of the superconducting transformer, many types of insulation tests should be carried out. To clarify the components of insulation for superconducting transformer, there are main four parts as 1ike that turn-to-turn interior of each primary and secondary windings, layer-to-layer between primary and secondary windings, and winding to grounded structures. The insulation components should meet the required withstand voltage of the system and enough safety factors must included. As the fundamental insulation characteristics, we tested surface flashover voltage of spacer that would place between the coils and would take the role of both cooling duct and insulator. The structure of spacer in practice vary depending on coil type, in this work we considered double pancake coil for the superconducting transformer. In this study we tested flashover voltages of several arrangement of spacer.

  • PDF

선박 추진용 저속형 고온초전도 모터 설계 (Design of Low-speed High-temperature Superconducting Motor for Ship Propulsion)

  • 백승규;권영길;김호민;이재득;이언용;김영춘;문태선;박희주;권운식;박관수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.947-948
    • /
    • 2007
  • A superconducting synchronous motor with rotating field coil has been designed. This rotating field coil is composed of high-temperature superconducting(HTS) wire but the stationary armature windings are composed of conventional copper wire. In this paper a 5MW class synchronous motor with rotating HTS coil is designed. This motor is aimed to be utilized for ship propulsion so it has very low-speed. Firstly an air-cored type has been designed, which does not have any iron core both at the field and at the armature teeth. Secondly several iron-cored rotor types are considered to reduce expensive HTS wire cost.

  • PDF

5 MW 고온초전도 모터 설계 (Conceptual Design of a 5 MW HTS Motor)

  • 백승규;권영길;김호민;이재득;김영춘;박희주;권운식;박관수
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권3호
    • /
    • pp.36-42
    • /
    • 2008
  • The superconducting motor shows several advantages such as smaller size and higher efficiency against conventional motor especially utilized in ship propulsion application. However, this size reduction merit appears in large capacity more than several MW. We are going to develop a 5MW class synchronous motor with rotating High-Temperature Superconducting (HTS) coil. that is aimed to be utilized for ship propulsion so it has very low-speed, The ship propulsion motor must generate very high electromagnetic torque instead of low-speed. Therefore. the rotor (field) coils need very large magnetic flux that results in large amount of expensive HTS conductor for the field coil. In this paper a 5MW HTS motor for ship propulsion is considered to be designed with construction cost reduced via HTS field coil cost reduction because HTS conductor cost is critical factor in the construction cost of HTS motor. In order to reduce the HTS conductor amount. iron-cored rotor types are considered. so several cases with iron-core are compared one another and with an air-core case.

Analyzed Model of The Active Filter combined with SMES

  • Kim A-Rong;Kim Jae-Ho;Kim Hae-Jong;Kim Seok-Ho;Seong Ki-Chul;Park Min-Won;Yu In-Keun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권2호
    • /
    • pp.20-24
    • /
    • 2006
  • Recently, utility network is becoming more and more complicated and huge due to IT and OA devices. In addition to, demands of power conversion devices which have non-linear switching devices are getting more and more increased. Consequently, because of the non-linear power semiconductor devices, current harmonics are unavoidable. Sometimes those current harmonics flow back to utility network and become one of the main reasons which can make the voltage distortion. Also, it makes noise and heat loss. On the other hands, voltage sag from sudden increasing loads is also one of the terrible problems inside of utility network. In order to compensate the current harmonics and voltage sag problem, AF(active filter) systems could be a good solution method. SMES is a very good promising source due to it's high response time of charge and discharge. Therefore, the combined AF and SMES system can be a wonderful device to compensate both harmonics current and voltage sag. However, SMES needs a superconducting magnetic coil. Because of using this superconducting magnetic coil, quench problem caused by unexpected reasons have always been unavoidable. Therefore, to solve out mentioned above, this paper presents a decisive method using shunt and series active filter system combined with SMES. Especially, authors analyzed the change of original energy capacity of SMES regarding to the size of resistance caused by quench of superconducting magnetic coil.

Analysis of Magnetic Field Application Effect on Fault Current Limiting Characteristics of a Flux-lock Type SFCL

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권6호
    • /
    • pp.255-259
    • /
    • 2008
  • The magnetic field application effect on resistance of a high-$T_c$ superconducting (HTSC) element comprising a flux-lock type superconducting fault current limiter (SFCL) was investigated. The YBCO thin film, which was etched into a meander line using a lithography, was used as a current limiting element of the flux-lock type SFCL. To increase the magnetic field applied into HTSC element, the capacitor was connected in series with a solenoid-type magnetic field coil installed in the third winding of the flux-lock type SFCL. There was no magnetic field application effect on the resistance of HTSC element despite the application of larger magnetic field into the HTSC element when a fault happened. The resistance of HTSC element, on the contrary, started to decrease at the point of four periods from a fault instant although the amplitude of the applied magnetic field increased.

능동 차폐형 초전도 MRI 마그네트의 형상 최적화 (Shape Optimization of Active Shield Superconducting MRI Magnet)

  • 진홍범;오봉환;류강식;송준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.210-212
    • /
    • 1996
  • A nonlinear optimization method for the shape optimization of actively shielded superconducting MRI magnet is presented. The presented design method can optimize both main coil and shielding coil simultaneously by setting constraints on stray field intensity at a specified distance from the magnet center. A 1 Tesla actively shielded superconducting MRI magnet, with 30cm bore diameter, is designed using the presented method.

  • PDF