• Title/Summary/Keyword: Supercapacitors

Search Result 187, Processing Time 0.03 seconds

Self-Supporting 3D-Graphene/MnO2 Composite Supercapacitors with High Stability

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.175-185
    • /
    • 2023
  • A hybrid supercapacitor is a promising energy storage device in view of its excellent capacitive performance. Commercial three-dimensional foam nickel (Ni) can be used as an ideal framework due to an interconnected network structure. However, its application as an electrode material for supercapacitors is limited due to its low specific capacity. Herein, we report a successful growth of MnO2 on the surface of graphene by a one-step hydrothermal method; thus, forming a three-dimensional MnO2-graphene-Ni hybrid foam. Our results show that the mixed structure of MnO2 with nanoflowers and nanorods grown on the graphene/Ni foam as a hybrid electrode delivers the maximum specific capacitance of 193 F·g-1 at a current density 0.1 A·g-1. More importantly, the hybrid electrode retains 104% of its initial capacitance after 1,000 charge-discharge cycles at 1 A·g-1; thus, showing the potential application as a stable supercapacitor electrode.

Fabrication of Three-Dimensionally Arrayed Polyaniline Nanostructures

  • Gwon, Hye-Min;Ryu, Il-Hwan;Han, Ji-Yeong;Im, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.220-220
    • /
    • 2012
  • The supercapacitors with extraordinarily high capability for energy storage are attracting growing attention for their potential applications in portable electronic equipments, hybrid vehicles, cellular devices, and so on. The nanostructuring of the electrode surface can provide large surface area and consequently easy diffusion of ions in the capacitors. In addition, compared to two-dimensional nanostructures, the three-dimensional (3D) nano-architecture is expected to lead to significant enhancement of mechanical and electrical properties such as capacitance per unit area of the electrode. Polyaniline (PANi) is known as promising electrode material for supercapacitors due to its desirable properties such as high electro activity, high doping level and environmental stability. In this context, we fabricated well-ordered 3D PANi nanostructures on 3D polystyrene (PS) nanospheres which was arrayed by layer-by-layer stacking method. The height of the PANi nanostructures could be controlled by the number of PS layers stacked. 3D PANi hollow nanospheres were also fabricated by dissolving inner PS nanospheres, which resulted in further enhancement of the surface area and capacitance of the electrode.

  • PDF

Combined effect of nitrogen- and oxygen functional groups on electrochemical performance of surface treated multi-walled carbon nanotubes (표면처리된 탄소나노튜브의 질소 및 산소관능기 도입에 따른 전기화학적 특성)

  • Kim, Ji-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.214.1-214.1
    • /
    • 2011
  • In this work, the electrochemical properties of the surface treated multi-walled carbon nanotubes (MWNTs) are investigated for supercapacitors. Nitrogen- and oxygen functional groups containing MWNTs are prepared by nitrogen precursors and acidic treatment, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and Zeta-potential measurements. The electrochemical properties of the MWNTs are investigated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M $H_2SO_4$ at room temperature. As a result, these functionalized MWNTs lead to an increase in the specific capacitance as compared with the pristine MWNTs. It proposes that the pyridinic and pyridinic-N-oxides nitrogen species influence on the specific capacitance due to their positive charges, and thus an improved electron transfer at high current loads, since they are the most important functional groups affecting capacitive behaviors.

  • PDF

Inflence of carbonization temperature on electrochemical performance of multi-walled carbon nanotube/poly(vinylidene fluoride) composite-derived carbons (탄소나노튜브/폴리비닐리덴 플루오라이드 복합체로부터 제조된 탄소의 탄화온도에 따른 전기화학적 특성)

  • Kim, Ji-Il;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.214.2-214.2
    • /
    • 2011
  • In this work, porous carbon based electrodes are prepared by carbonization using poly(vinylidene fluoride) (PVDF)/carbon nanotube (CNT) composites to further increase the specific capacitance for supercapacitors. Electrode materials investigate the aspects of specific capacitance, pore size distribution and surface area: influence of carbonization temperatures of PVDF/CNT composites. The electrochemical properties are investigated by cyclic voltammetry, impedance spectra, and galvanostatic charge-discharge performance with in $TEABF_4$ (tetraethylammonium tetrafluoroborate)/acetonitrile as non-aqueous electrolyte. From the results, the highest value of specific capacitance of ~101 $F{\cdot}g^{-1}$ is obtained for the samples carbonized at $600^{\circ}C$. Furthermore, pore size of samples control be low 7 nm through carbonization process. It is suggested that micropores significantly contribute to the specific capacitance, resulting from improved charge transfer.

  • PDF

Vehicle Voltage Stabilizing Module Using Supercapacitors (슈퍼캐패시터를 이용한 자동차 전압 안정화 모듈)

  • Park, Sukhee;Jeong, Kyuwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2015
  • The performance of a passenger vehicle has been greatly improved recently owing to the intensive use of electronic controllers. Many components of a vehicle, including the engine, are controlled by electronic systems installed in the vehicle. Therefore, the electrical power required for such electronics has increased significantly. However, the electrical power generated by the vehicle's alternator, operated by the engine, is limited, and when the vehicle is started, a large instantaneous current is required. The voltage of the vehicle electrical system fluctuates to a very low level, then, it is gradually recovered. This case is very severe and can even cause damage to electronic systems. In this study, a voltage-stabilizing module comprising electric double layer supercapacitors, which could alleviate the voltage variation, was developed and tested.

Ruthenium Oxide Electrode Deposited on 3D Nanostructured-nickel Current Collector and Its Application to Supercapacitors

  • Ryu, Ilhwan;Kim, Green;Park, Dasom;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.181.1-181.1
    • /
    • 2014
  • Supercapacitor is attracting growing attention for a promising energy conversion and storage device because of its desirable electrochemical properties such as rapid charge-discharge rate, high power density and long cycle life. Three-dimensional (3D) metal nanostructure has been widely studied since it can provide efficient charge transport along the 3D network in many device applications. In this work, we fabricated well-ordered 3D nickel (Ni) nanostructures using 3D-arrayed polystyrene nano-opal substrates. We also fabricated half-cell supercapacitors by electrodepositing $RuO_2$ onto these nanostructured Ni current collectors and investigated their morphological and electrochemical properties.

  • PDF

Fabrication of Graphene Supercapacitors for Flexible Energy Storage

  • Habashi, M. Namdar;Asl, Shahab Khameneh
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.248-254
    • /
    • 2017
  • In the present work, graphene powder was synthesized by laser scribing method. The resultant flexible light-scribed graphene is very appropriate for use in micro-supercapacitors. The effect of the laser scribing process in reducing graphene oxide (GO) was investigated. GO was synthesized using a chemical mixture of GO solution; then, it was coated onto a LightScribe DVD disk and laser scribed to reduce GO and create laser-scribed graphene (LSG). The CV curves of pristine rGO at various scan rates showed that the ultimate product possesses the ability to store energy at the supercapacitor level. Charge-discharge curves of pristine rGO at two different current densities indicated that the specific capacitance ($C_m$) increases due to the reduction of the discharge current density. Finally, the long-term charge-discharge stability of the LSG was plotted and indicates that the specific capacitance decreases very slightly from its primary capacitance of ${\sim}10F\;cm^{-3}$ and that the cyclic stability is favorable over 1000 cycles.

Experimental Characteristics Examination of a Hybrid-Type Supercapacitor (하이브리드형 슈퍼커패시터의 실험적 특성 규명)

  • Jeong, Kyuwon;Shin, Jaeyoul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.307-311
    • /
    • 2016
  • Several types of supercapacitors have been developed for energy storage systems. Among them, the hybrid type has advantages such as a large capacitance per weight compared with the electric double-layer capacitator type. In this study, constant current charging and discharging tests were conducted for recently developed hybrid-type supercapacitors. Based on the experimental results, the capacitance and equivalent series resistance were obtained. The capacitance was larger than the designed capacitance at a low current but became small at a high current. In addition, the capacitance depended on the cell voltage. These results can be used to design an energy storage system.

Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes

  • Mudila, Harish;Zaidi, M.G.H.;Rana, Sweta;Alam, S.
    • Carbon letters
    • /
    • v.18
    • /
    • pp.43-48
    • /
    • 2016
  • Sulphonated polysulphone (SPS) has been synthesized and subsequently applied as binder for graphene oxide (GO)-based electrodes for development of electrochemical supercapacitors. Electrochemical performance of the electrode was investigated using cyclic voltammetry in 1M Na2SO4 and 1M KOH solution. The fabricated supercapacitors gave a specific capacitance of 161.6 and 216.8 F/g with 215.4 W/kg and 450 W/kg of power density, in 1M Na2SO4 and 1M KOH solutions, respectively. This suggests that KOH is a better electrolyte than Na2SO4 for studying the electrochemical behavior of electroactive material, and also suggests SPS is a good binder for fabrication of a GO based electrode.

Preparation of polythiophene electrode and it's application for supercapacitor (폴리싸이오펜전극의 제조와 수퍼커패시터로서의 응용)

  • ;;Katsuhiko Naoi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.573-576
    • /
    • 2001
  • In the research fields of energy storage, and more specifically of supplying high powers, electrochemical supercapacitor have been among the most studied systems for many years. One of the possible applications is in electric vehicles. We have been working on electronically conducting polymers for use as active materials for electrodes in supercapacitors. These polymers have the ability of doping and undoping with rather fast kinetics and have an excellent capacity for energy storage. polythiophene (Pth) and polyparafluorophenylthiophene (PFPT) have been chemically synthesized for use as active materials in supercapacitor electrodes. Electrochemical characterization has been performed by cyclic voltammetry and an electrode study has been achieved to get the maximun capacity out of the polymers and give good cyclability. specific capacity values of 7mAh/g and 40mAh/g were obtained for PFPT and polythiophene, respectively. Supercapacitors have been built to characterize this type of system. Energy storage levels of 260F/g were obtained with Pth and 110F/g with PFPT

  • PDF