Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.5.248

Fabrication of Graphene Supercapacitors for Flexible Energy Storage  

Habashi, M. Namdar (Department of Materials Engineering, University of Tabriz)
Asl, Shahab Khameneh (Department of Materials Engineering, University of Tabriz)
Publication Information
Korean Journal of Materials Research / v.27, no.5, 2017 , pp. 248-254 More about this Journal
Abstract
In the present work, graphene powder was synthesized by laser scribing method. The resultant flexible light-scribed graphene is very appropriate for use in micro-supercapacitors. The effect of the laser scribing process in reducing graphene oxide (GO) was investigated. GO was synthesized using a chemical mixture of GO solution; then, it was coated onto a LightScribe DVD disk and laser scribed to reduce GO and create laser-scribed graphene (LSG). The CV curves of pristine rGO at various scan rates showed that the ultimate product possesses the ability to store energy at the supercapacitor level. Charge-discharge curves of pristine rGO at two different current densities indicated that the specific capacitance ($C_m$) increases due to the reduction of the discharge current density. Finally, the long-term charge-discharge stability of the LSG was plotted and indicates that the specific capacitance decreases very slightly from its primary capacitance of ${\sim}10F\;cm^{-3}$ and that the cyclic stability is favorable over 1000 cycles.
Keywords
graphene oxide; laser scribed grapheme; micro-supercapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Tian, Y. Shu, X. Wang, M. Mohammad, Z. Bie, Q. Xie, C. Li, W. Mi, Y. Yang and T. Ren, Sci. Rep., 5, 8603 (2015).   DOI
2 H. Tian, Y. Shu, Y. Cui, W. Mi, Y Yang, D. Xie and T. Ren, Nanoscale, 6, 699 (2014).   DOI
3 K. Griffiths, C. Dale, J. Hedley, M. D. Kowal, R. B. Kaner and N. Keegan, Nanoscale, 6, 13613 (2014).   DOI
4 F. Wen, C. Hao, J. Xiang, L. Wang, H. Hou, Z. Su, W. Hu and Z. Liu, Carbon, 75, 236 (2014).   DOI
5 J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso and J. M. D. Tascon, Langmuir, 24, 10560 (2008).   DOI
6 Z. Li, P. Liu, G. Yun, K. Shi, X. Lv, K. Li, J. Xing and B. Yang, Energy, 69, 266 (2014).   DOI
7 L. Chen., X. Zhang, H. Liang, M. Kong, Q. Guan, P. Chen, Z. Wu and S. Yu, ACS Nano, 6, 7092 (2012).   DOI
8 D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna and P. Simon, Nat. Nanotechnol., 5, 651 (2010).   DOI
9 J. Chmiola, C. Largeot, P. L. Taberna, P. Simon and Y. Gogotsi, Science, 328, 480 (2010).   DOI
10 S. Patrice and Y. Gogotsi, Nature Mater., 7, 845 (2008).   DOI
11 L. Mai, F. Yang, Y. Zhao, X. Xu, L. Xu and Y. Luo, Nature Commun., 2, 381 (2011).   DOI
12 S. Juan Manuel, E. Morallon and D. Cazorla-Amoros. Energy, 58, 519 (2013).   DOI
13 J. Zhang, J. Jiang, H. Lib and X. S. Zhao, Energy Environ. Sci., 4, 4009 (2011).   DOI
14 S. Yiqing, Q. Wu and G. Shi., Energy Environ. Sci., 4, 1113 (2011).   DOI
15 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, Nature, 442, 282 (2006).   DOI
16 J. Miller, R. A. Outlaw and B. C. Holloway, Science, 329, 1637 (2010).   DOI
17 M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano lett., 8, 3498 (2008).   DOI
18 D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).   DOI
19 X. Kanga, J. Wanga, H. Wua, I. A. Aksayc, J. Liua and Y. Lin, Biosens. Bioelectron., 25, 901 (2009).   DOI
20 S. Alwarappan, C. Liu, A. Kumar and C. Li, J. Phys. Chem. C, 114, 12920 (2010).   DOI
21 K. R. Ratinac, W. Yang, J. J. Gooding, P. Thordarson and F. Braet, Electroanalysis, 23, 803 (2011).   DOI
22 M. Chen, C. Park, Z. Meng, L. Zhu, J. Choi, T. Ghosh, I. Kim, S. Yang, M. Bae, F. Zhang and W. Oh, Fullerenes, Nanotubes and Carbon Nanostructures, 21, 525 (2013).   DOI
23 M. Ates, D. Cinar, S. Caliskan, U. Gecgel, O. Uner, Y. Bayrak and I. Candan, Fullerenes, Nanotubes and Carbon Nanostructures, 24, 427 (2016).   DOI
24 J. Ma, Qi Guo, H. Gao and X. Qi, Fullerenes, Nanotubes and Carbon Nanostructures, 23, 477 (2015).   DOI
25 Y. Yang, Fullerenes, Nanotubes and Carbon Nanostructures, 24, 243 (2016).   DOI
26 M. El-Kady, V. Strong1, S. Dubin and R. Kaner, Science, 335, 1326 (2012).   DOI
27 V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller and R.B. Kaner, ACS Nano, 6, 1395 (2012).   DOI
28 M. El-Kady and R. B. Kaner, ACS Nano, 8, 8725 (2014).   DOI
29 M. El-Kady and R. B. Kaner, Nature Commun., 4, 1475 (2013).   DOI
30 Y. Liua,Y. Lib, Y. Yanga, Y. Wenc and M. Wang, Scripta Mater., 68, 301 (2013).   DOI
31 H. Tian, Y. Yang, D. Xie, Y. Cui, W. Mi, Y. Zhang and T. Ren, Sci. Rep., 4, 3598 (2014).
32 H. Tian, C. Li, M. Mohammad, Y. Cui, W. Mi, Y. Yang, D. Xie and T. Ren, ACS Nano, 8, 5883 (2014).   DOI