• Title/Summary/Keyword: Super-hydrophobic

Search Result 74, Processing Time 0.023 seconds

The impact behaviors of electrified micro-droplet with existence and nonexistence of electrical charged for surface (표면 전하 유무에 따른 대전된 미소액적의 충돌 현상)

  • Lee, Jaehyun;Kim, Jihoon;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.49-53
    • /
    • 2015
  • Recently, researches for droplet impact phenomena have been faced a new phase in the direction of studying the effect of complex external conditions (e.g. wettability, temperature, morphology, electric field, etc.) for depth understanding and precise controlling in various applications. Hence, here we investigated the electrified droplet impact phenomena, because there were few quantitative researches for electrified droplet impact when we considering many real applications such as electrospray, electrohydrodynamic (EHD) jet printing. To observe interaction effect of surface charge between substrate and droplet simultaneously, micro-droplets with various Reynolds number (Re) and Weber number (We) were dripped on super-hydrophobic surface with existence and nonexistence of electrical surface charge. It shows three kinds of impact behaviors, fully bouncing, partial bouncing, and splashing with different We. Also, charged droplet bounced higher on electrically charged surface than on non-charged surface. Additionally, transition regions of three impact behaviors were classified quantitatively with water hammer pressure value, which means instant pressure inside droplet at the impact moment.

Surface Treatment Effect on the Toilet by Numerical Modeling and High Speed CCD Camera (수치모델과 고속 CCD 카메라를 이용한 세변기 표면 처리 효과 특성 해석)

  • Roh, Ji-Hyun;Do, Woo-Ri;Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • Numerical analysis is done to investigate the effect of surface treatment of a toilet on the cleanness. The surface treatment using plasma for the super-hydrophobic surface expects the self-cleaning effect of the toilet seat cover for preventing the droplets with a great quantity of bacteria during the toilet flushing after evacuation. In this study, the fluid analysis in the toilet during the flushing was performed by an ultrahigh-speed CCD camera with 1,000 frame/sec and the numerical modeling. And the spattering phenomenon from the toilet surface during urine was analyzed quantitatively by CFD-ACE+ with a free surface model and a mixed model of two fluids. If the surface tension of the toilet surface is weak, many urine droplets after collision bounded in spite of considering the gravity. The turbulence generated by the change of angle and velocity of urine and the variation of the collision phenomenon from toilet surface were modeled numerically.

MWCNT 및 무기 바인더를 사용하여 103Ω/cm2이하의 낮은 표면저항과 접촉각 160° 이상의 초발수성을 갖는 코팅액 개발

  • Kim, Ju-Yeong;Lee, Jun-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.94-94
    • /
    • 2018
  • 무인자동차 및 전기자동차 등 전장부품 및 메인보드에서의 오염 방지와 전자파에 의한 신호 간섭 현상에 따른 기기의 오작동을 방지하고자 MWCNT의 clustering 및 tangling현상을 활용하여 self cleaning 기능을 갖는 super hydrophobic 표면과 high aspect ratio에 의한 percolation 현상을 활용하여 전자파 차폐를 위한 낮은 표면저항을 만족하는 복합 재료로 구성된 코팅에 관하여 연구하였다. 이를 위해 isopropyl alcohol(IPA)을 용매로 산처리 한 MWCNT와 무기바인더, 불소계 실란을 첨가하여 초음파 분산을 함으로써 코팅액을 제조하였다. 이를 full cone nozzle type, 흡상식 스프레이 조건으로 알루미늄 시편위에 스프레이 코팅 후 열경화 하여 접촉각측정기로 측정 결과 $160^{\circ}$이상의 초발수 표면과 Low Resistivity Meter로 표면저항을 측정한 결과 $10^3{\Omega}/cm^2$ 이하의 낮은 코팅막을 구현하였으며 내구성 실험을 위한 항온항습 장비로 $80^{\circ}C$의 내열테스트 및 80%와 $80^{\circ}C$조건하에서의 내습테스트 결과 표면에 이상 없음을 확인하였고 열전도율 측정을 위해 밀도 측정 결과 $2.68g/cm^3$, 비열 측정 결과 $0.85J/g^{\circ}C$가 열확산율 측정결과 $88.64mm^2/s$가 측정 되었으며 밀도, 비열, 열확산율을 곱한 값인 $201.9W/m{\cdot}K$의 열전도를 갖는 코팅막을 구현하였다.

  • PDF

Super-hydrophobic Electrodeposited Zinc Layer for Anti-Corrosion by Phosphatization (인산염처리를 이용한 방식용 초발수성 아연 도금층)

  • Jeong, Hae-Chang;Kim, Wang-Ryeol;Gang, Min-Ju;Kim, Gwon-Hu;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.78-78
    • /
    • 2018
  • 전기 아연도금은 철강의 내식성을 향상시키기 위한 희생양극으로 사용되어 왔다. 이러한 아연 도금층의 내식성은 그 아연에 의하여 부식으로부터 보호받는 철강 소재의 수명과 직결됨에 따라 아연 도금층의 성능 특히 부식저항성을 높이는 연구는 소재 수명 뿐만이라 성능의 유지하는데 있어서 매우 중요하다. 본 연구에서는 전기 아연 도금층에 표면에너지가 낮은 물질인 테플론을 얇게 코팅함으로써 발수성 표면을 구현하였다. 발수성 표면은 물에 대한 젖음성이 매우 낮기 때문에 부식 저항성이 높은 것으로 알려져 있는데, 이는 표면의 거칠기를 제어함으로써 그 효과를 극대화 할 수 있다. 본 연구에서는 특히 전기 아연 도금의 후처리로 알려진 인산염 처리를 이용하여 전기 아연 도금층의 표면형상 구조를 제어하였다. 그리고 그 표면에 테플론을 코팅함으로써 초발수 성질을 구현하였고, 이를 통해 아연 도금층의 내식성 향상에 대하여 분석하였다. 그 결과, 인산염처리에 의하여 표면형상의 구조가 거칠어질수록 테플론 코팅 후 접촉각과 물방울의 이동성은 증가하였다. 이는 표면형상에 의해서 공기층이 물방울 아래에 고립되어 있다는 것을 의미하고, 이러한 공기층으로 인하여 아연 도금층의 내식성은 크게 증가하였다.

  • PDF

Teflon coating of fabric filters for enhancement of high temperature durability (섬유상 여과필터의 고온 내구성 향상을 위한 테프론 코팅 연구)

  • Kim, Eun-Joo;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.232-239
    • /
    • 2011
  • Fabric fibrous filter has been used in various industrial applications owing to the low cost and wide generality. However, the basic properties of fabric materials often limit the practical utilization including hot gas cleaning. This study attempts to find new coatings of porous fibrous filter media in order to overcome its insufficient thermal resistance and durability. Teflon was one of the plausible chemicals to supplement the vulnerability against frequent external thermal impacts. A foaming agent composed of Teflon and some organic additives was tentatively coated on the glass fiber mat. The present test Teflon foam coated filter was fount to be useful for hot gas cleaning, up to $250^{\circ}C$-$300^{\circ}C$. Close examination using XPS(X-ray Photoelectron Spectroscopy) and Contact angle proved the binding interactions between carbon and fluorine, which implies coating stability. The PTFE/Glass foam coated filter consisted of more than 95% (C-F)n bond, and showed super-hydrophobic with good-oleophobic characteristics. The contact angle of liquid droplets on the filter surface enabled to find the filter wet-ability against liquid water or oil.

Preparation of Non-Fluorinated Water Repellent Coating Films Using Methyltrimethoxysilane and Trimethylethoxysilane (Methyltrimethoxysilane과 Trimethylethoxysilane을 이용한 비불소계 발수 코팅 도막의 제조)

  • Kim, Dong Gu;Lee, Byoung Hwa;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.177-184
    • /
    • 2019
  • Non-fluorinated water repellent coating solutions were obtained using methyltrimethoxysilane (MTMS) and trimethylethoxysilane (TMES) as precursors. The solutions were spin-coated on a cold-rolled steel sheet and cured thermally to prepare water repellent coating films. During this process, the effect of molar ratio of TMES/MTMS was studied for the hydrophobic properties of the coating films. Hydrophobic properties of coating films were characterized using contact angle measurement, surface morphology analysis and infrared spectroscopy. When the molar ratio of TMES/MTMS was varied from 0 to 30, the contact angle of the un-coated cold-rolled steel sheet was $30^{\circ}$, whereas when the molar ratio of TMES/MTMS was 1, the contact angle increased to $104^{\circ}$ and water repellency was significantly improved. In the case of TMES/MTMS molar ratios of 10, 15, 25 and 30, the contact angles of coating films showed $109^{\circ}$, $114^{\circ}$, $117^{\circ}$ and $144^{\circ}$, respectively. At this time, the hydrophobicity of the coating films was improved by the increase of the surface roughness and the content of the methyl component at the coating surface. In particular, when the molar ratio of TMES/MTMS was 30, the overall surface roughness was greatly increased due to the presence of surface particles as well as the water repellency due to methyl groups of TMES, resulting in super hydrophobicity of $144^{\circ}$.

MICROLEAKAGE AND WATER STABILITY OF RESIN CEMENTS

  • Choi Sun-Young;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.369-378
    • /
    • 2003
  • Statement of Problem: Recently, resin cements have become more widely used and have been accepted as prominent luting cements. Current resin cements exhibit less microleakage than conventional luting cements. However, the constant contact with water and exposure to occlusal forces increase microleakage even in resin cements inevitably. Most bonding resins have been modified to contain a hydrophilic resin such as 2-hydroxyethylmethacrylate (HEMA) to overcome some of the problems associated with the hydrophobic nature of bonding resins. By virtue of these modifications, bonding resins absorb a significant amount of water, and there may also be significant stresses at bonding interfaces, which may adversely affect the longevity of restorations. Therefore the reinforcement of water stability of resin cement is indispensable in future study. Purpose: This study was conducted to examine the influence of water retention on microleakage of two resin cements over the period of 6 months. Materials and Methods: 32 extracted human teeth were used to test the microleakage of a single full veneer crown. Two resin cements with different components and adhesive properties - Panavia F (Kuraray Co., Osaka, Japan) and Super-Bond C&B (Sun Medical Co., Kyoto, Japan)- were investigated. The storage medium was the physiological saline solution changed every week for 1 month, 3 months, and 6 months. One group was tested after storage for 1 day. At the end of the each storage period, all specimens were exposed to thermocycling from $5^{\circ}C$ to $55^{\circ}C$ of 500 cycles and chewing simulation of 50,000 cycles, and then stained with 50% silver nitrate solution. The linear penetration of microleakage was measured using a stereoscopic microscope at ${\times}40$ magnification and a digital traveling micrometer with an accuracy of ${\pm}3{\mu}m$. Values were analyzed using two-way ANOVA test, Duncan's multiple range tests (DMRT). Results : Statistically significant difference of microleakage was shown in the 3-month group compared with the1-day or 1-month group in both systems (p<0.05) and there were statistically significant differences in microleakage between the 3-month group and the 6-month group in both systems (p<0.05). The two systems showed different tendency in the course of increased microleakage during 3 months. In Panavia F, microleakage increased slowly throughout the periods. In Super-Bond C&B, there was no significant increase of microleakage for 1 month, but there was statistically significant increase of microleakage for the next 2 months. For the mean microleakage for each period, in the 3-month group, microleakage of Super-Bond C&B was significantly greater than that of Panavia F. On the other hand, in the 6-month group, microleakage of Panavia F was significantly greater than that of Super-Bond C&B (p<0.05). Conclusion: Within the limitation of this study, water retention of two different bonding systems influence microleakage of resin cements. Further studies with the longer observation periods in viro are required in order to investigate water stability and the bonding durability of the resin cement. CLINICAL IMPLICATIONS Microleakage at the Cement-tooth interfaces did not necessarily result in the failure of the crowns. But it is considered to be a major factor influening the longerity of restorations. Further clinical approaches for decreasing the amount of microleakage are required.

Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

  • Ahmed, Asif;Nagarajan, Shanthi;Doddareddy, Munikumar Reddy;Cho, Yong-Seo;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2008-2014
    • /
    • 2011
  • Serotonin or 5-hydroxytryptamine subtype 2C ($5-HT_{2C}$) receptor belongs to class A amine subfamily of G-protein-coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (${\beta}$2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.

Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation (자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Jang, Jung-Hoon;Kim, Myung-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Interfacial evaluation and hydrophobicity of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and resistivity were measured using gradient micro-specimens. The actuation of the composites in the electromagnetic field was studied with three wave functions, i.e., sine, triangle and square functions. Due tothe presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy nanocomposite wasabout $100^{\circ}$, which was rather lower than that for super-hydrophobicity. The dynamic contact angle showed the similar trend of static contact angle. Ni-nanopowder/epoxy composite was responded wellfor both self-sensing and actuation in electromagnetic field due to the intrinsic metal property of Ni-nanopowder. Displacement of the actuator of Ni-nanopowder/epoxy composite was evaluated to obtain the maximum and the optimum performance using laser displacement sensor as functions of the wave type, frequency, and voltage. Actuation of Ni-nanopowder/epoxy composites also increased as functions of applied frequency and voltage. Actuated strain increased more rapidly at sine wave with increasing voltage compared to those of triangle or rectangular waves.

Super-Hydrophobic Coating and Plasma Electrolytic Oxidation for Anti-Corrosion Property of Magnesium Alloy (초발수 코팅 및 플라즈마 전해 산화를 이용한 마그네슘합금의 내식성 향상)

  • Ju, Jae-Hun;Kim, Dong-Hyeon;Kim, Gwon-Hu;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.79-79
    • /
    • 2018
  • 마그네슘은 나트륨, 알루미늄과 함께 지구상에서 가장 풍부한 금속 중 하나로서 밀도가 약 $1.74g/cm^3$으로서 구조용 금속재료 중 가장 가볍고 우수한 비강도를 지니고 있으며, 우수한 열전도도, 전기전도도, 전자파 차폐능을 지닌다. 최근 마그네슘 및 그 합금은 항공기, 자동차, 전자제품, 기계류 및 생활용품 등에 쓰이고 있으며, 사용량 및 적용범위가 매년 급격히 증가되고 있는 추세이다. 그러나 마그네슘합금은 매우 낮은 표준 환원전위와 치밀하지 못한 표면 산화막으로 인하여 부식에 대한 저항성이 매우 취약하다는 한계를 가지고 있다. 따라서 마그네슘합금의 표면처리 가운데 부식에 대한 저항성을 보완할 수 있는 방법은 활발한 마그네슘합금의 응용에 필수적이다. 이러한 마그네슘합금의 내식성을 향상시키고자 전기화학적 플라즈마 전해 산화처리 (Plasma Electrolytic Oxidation)를 하게 되는데, 아노다이징, 화성피막처리 등 과 같은 기존의 산업적 표면처리 방안으로는 불가능한 수준의 표면경도를 확보할 수 있을 뿐만 아니라 두꺼운 산화피막 형성을 통해 이들 합금이 가진 기본적 취약점인 내식성 문제를 보완할 수 있는 장점이 있지만, 다공성 산화피막 형성만으로 기대할 수 있는 내식성 향상 효과가 매우 크지는 못하다. 따라서 다공성의 양극산화피막의 단점, 즉 다공성 물질로 부식성 물질의 이동을 허용할 수 있는 공간을 가지는 구조를 개선시킬 수 있는 추가적인 처리를 필요로 한다. 본 연구에서는 발수성 표면처리를 이용하여 다공성 구조물의 표면이 물에 대한 저항성을 가지도록 함으로써 초발수성 표면을 구현하고자 하였다. 이러한 방법은 기존의 후처리 방법인 봉공처리로는 얻을 수 없었던 다공성 구조물로의 부식성 물질의 침투를 억제할 수 있었으며, 상당한 수준의 내식성 향상 효과를 보여주었다. 또한 물에 대한 반발성은 표면에 물의 이동성을 높이는 효과를 보여주며 이로 인하여 자기세척 효과도 보여주었다.

  • PDF