• 제목/요약/키워드: Super-cooling

검색결과 92건 처리시간 0.02초

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

The influence of internal ring beams on the internal pressure for large cooling towers with wind-thermal coupling effect

  • Ke, Shitang;Yu, Wei;Ge, Yaojun;Zhao, in;Cao, Shuyang
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.1-17
    • /
    • 2019
  • Internal ring beams are primary components of new ring-stiffened cooling towers. In this study, numerical simulation of the internal flow field of a cooling tower with three ring beams under wind-thermal coupling effect is performed. The studied cooling tower is a 220-m super-large hyperbolic indirect natural draft cooling tower that is under construction in China and will be the World's highest cooling tower, the influence of peripheral radiators in operating cooling tower is also considered. Based on the simulation, the three-dimensional effect and distribution pattern of the wind loads on inner surface of the cooling tower is summarized, the average wind pressure distributions on the inner surface before and after the addition of the ring beams are analyzed, and the influence pattern of ring beams on the internal pressure coefficient value is derived. The action mechanisms behind the air flows inside the tower are compared. In addition, the effects of internal ring beams on temperature field characteristics, turbulence kinetic energy distribution, and wind resistance are analyzed. Finally, the internal pressure coefficients are suggested for ring-stiffened cooling towers under wind-thermal coupling effect. The study shows that the influence of internal stiffening ring beams on the internal pressure and flow of cooling towers should not be ignored, and the wind-thermal coupling effect should also be considered in the numerical simulation of cooling tower flow fields. The primary conclusions presented in this paper offer references for determining the internal suction of such ring-stiffened cooling towers.

테슬라(TESLA) 전기자동차 핵심 기술동향 (The Core Technical Trends of TESLA EV(Electric Vehicle) Motors)

  • 배진용
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.64-65
    • /
    • 2017
  • This paper review the core technical trends of TESAL EV(Electric Vehicle) Motors. The object of this study analyzes electric vehicle's body appearance, motor cooling system, battery arrangement, battery management system (BMS), and super charging station etc.

  • PDF

고효율 수퍼히트펌프에 관한 전산 해석 (Computer Simulation of a Super-Heat Pump System)

  • 김학준;정동수;김종보;하경용
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.234-248
    • /
    • 1995
  • A super-heat pump system composed of a suction line heat exchanger, low and high stage economizers, and a screw compressor is simulated to examine the energy performance and design options. CFC12, HCFC22, HFC134a, HCFC22/HCFC142b, HFC32/HFC134a, and HFC125/HFC134a are used as working fluids for comparison. The results indicate that the proposed system charged with appropriate mixtures is up to 33.4% more energy efficient than the normal system with CFC12. The performance of the super-heat pump system charged with mixtures was influenced by such factors as the temperature matching, heat source temperature difference, low stage economizer, and high stage economizer. The fluids with a larger liquid specific heat such as HFC134a would have more benefits when a suction line heat exchanger is installed. 40%HCFC22/60%HCFC142b mixture seems to be a good candidate to replace CFC12. On the other hand, 25%HFC32/75% HFC134a would be a good long term candidate to replace HCFC22.

  • PDF

자연에너지를 이용한 생활공간 냉난방용 열펌프의 성능향상을 위한 과냉 촉진 신개념 열교환기(HESC) 개발 (Development of a New Heat Exchanger for the Super Cooling (HESC) to Enhance the Performance of the Heat Pump System for the Living Space by the Natural Energy)

  • 송헌
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.40-48
    • /
    • 2011
  • 과냉 촉진을 위한 새로운 열교환기(HESC)가 생활공간의 냉난방을 위한 공기-물 열펌프의 성능계수 향상을 위해 본 연구에서 개발되었으며 그 효과를 실험적으로 분석하였다. 이 열교환기(HESC)는 여러 단계의 셀과 튜브로 구성되어 있으며, 열펌프 시스템의 응축기와 증발기 사이에 장착되었다. 실험 조건으로, 외기온은 $7^{\circ}C$에서 $-17^{\circ}C$, 입구 물 온도는 $7{\sim}10^{\circ}C$ 그리고 제 2열전달매체로서 물의 질량 유동율은 시간당 100에서 $300{\ell}$로 변화를 주었다. 본 실험에서 이 열교환기가 장착된 열펌프의 압축기에서의 냉매 입 출구 사이의 온도 차이는 열교환기가 장착되지 않은 열펌프보다 $15^{\circ}C$ 높았다. 이에 따라 이 열교환기가 장착된 열펌프 시스템은 외기온 $-10^{\circ}C$에서 COP가 0.8 증가하였다. 따라서 이 공기-물 열펌프 시스템은 최근 한국에서 실용화되고 있는 고비용이 요구되는 지열 열펌프 시스템을 대체하여 생활공간을 위한 냉난방 시스템으로서 중요한 역할을 할 수 있을 것으로 사료된다.

상변화물질을 충진한 구형 캡슐의 축냉 특성 (Cold Thermal Energy Storage Characteristics of Spherical PCM Capsule)

  • 윤홍선;권진경;정훈;이현동;김영근
    • Journal of Biosystems Engineering
    • /
    • 제33권5호
    • /
    • pp.303-308
    • /
    • 2008
  • The freezing characteristics of two kinds of phase change materials (PCM) encapsulated in a spherical container were investigated with various cooling air temperatures and velocities. The super cooling and solidification time of PCM were highly affected by cooling air temperature and velocity. The experimental equations are derived to express total solidification time of the PCM in terms of Nusselt number and dimensionless temperature.

자동차 공조시스템에서 건조기 일체형 응축기의 성능특성 (Performance Characteristics of Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System)

  • 김경훈;김석우
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.205-210
    • /
    • 2004
  • Sub-cooled hybrid condenser(SCHC) which have been developed through this study is an appliance of integrating a condenser with a receiver dryer, which were previously separated. It is supposed that the development of sub-cooled hybrid condenser will be able to reduce not only weight, size, production process and cost, but also quite improve in capability, which will be of great use for the technological development and research of an air conditioning system whose importance is higher in a car. Through the present study it was found that the developed SCHC increases in the degree of sub-cooling by 10∼100% compared to conventional condenser. The excessive sub-cool has improved the cooling performance by 10%, and that leads to the reduction in evaporator outlet air temperature $1.5^{\circ}C$. Additionally, it is expected that sub-cooled hybrid condenser weights less by 100g than the previous condensers which has equal super heat.

Wind loading characteristics of super-large cooling towers

  • Zhao, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제13권3호
    • /
    • pp.257-273
    • /
    • 2010
  • The aerodynamic and aero-elastic model tests of the China''s highest cooling tower has been carried out in the TJ-3 Boundary Layer Wind Tunnel of Tongji University. By adopting a scanivalve system, the external wind pressure is firstly measured on $12{\times}36$ taps for a single tower, two and four grouped towers under the condition of both smooth flow and the boundary layer due to surrounding geographic and building topography. The measurements of internal wind pressure distribution of $6{\times}36$ taps are taken for a single tower under the various ventilation ratios ranging from 0% to 100% of stuffing layers located at the bottom of the tower. In the last stage, the wind tunnel tests with an aero-elastic model are carefully conducted to determine wind-induced displacements at six levels (each with eight points) with laser displacement sensors. According to the measurement results of wind pressure or vibration response, the extreme aerodynamic loading values of the single or grouped towers are accordingly analyzed based on probability correlation technique.

화력발전용 슈퍼 듀플렉스 스테인리스 강 조관재의 용접 후 열처리 조건이 국부부식 저항성에 미치는 영향 (Effects of post weld heat treatment conditions on localized corrosion resistance of super duplex stainless steel tube used for thermal power plant applications)

  • 이준호;박진성;조동민;홍승갑;김성진
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.248-259
    • /
    • 2021
  • This study examined the influence of post weld heat treatment (PWHT) conditions on corrosion behaviors of laser-welded super duplex stainless steel tube. Due to the high cooling rate of laser welding, the phase fraction of ferrite and austenite in the weld metal became unbalanced significantly. In addition, the Cr2N particles were precipitated adjacent to the fusion line, which can be susceptible to the localized corrosion. On the other hand, the phase fraction in the weld metal was restored at a ratio of 5:5 when exposed to temperatures above 1060 ℃ during the post weld heat treatment. Nevertheless, the high beltline speed during the PWHT, leading to the insufficient cooling rate, caused a precipitation of σ phase at the interface between ferrite/austenite in both weld metal and base metal. This resulted in the severe corrosion damages and significant decrease in critical pitting temperature (CPT), which was even lower than that measured in as-welded condition. Moreover, the fraction of σ phase in the center region of post weld heat treated steel tube was obtained to be higher than in the surface region. These results suggest that the PWHT conditions for the steel tube should be optimized to ensure the high corrosion resistance by excluding the precipitation of σ phase even in center region.