• Title/Summary/Keyword: Super Element

Search Result 229, Processing Time 0.027 seconds

Evaluation of Static Error Signal for Super Slim Optical Pick-up (초소형 광 픽업의 정적 오차 신호 검출)

  • Kang, S.M.;Cho, E.H.;Sohn, J.S.;Kim, W.C.;Park, N.C.;Park, Y.P.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.115-120
    • /
    • 2005
  • As a popularity of a portable digital device such as a cellular phone, a digital camera and a MP3 player is spreading, the demand of the mobile storage device increases rapidly. A bluray technology using 405nm laser diode and objective lens having high NA(Numerical Aperture), 0.85, satisfies a miniaturization and a high capacity which are the requirements of the portable device. To develop SFFOP(small form factor optical pickup), it is prerequisite to minimize the number of optical components and establish evaluation and assembly method of micro optical pickup system as well as mass production method of micro optical component. To minimize optical elements of optical pickup, there have been many researches to use P-HOE(Polarized Holographic Optical Element) due to its extremely small size and versatile function. However, P-HOE is handled and assembled very accurately in SFFOP. In this paper, static error signal detection method is developed for an alignment of P-HOE in SFFOP. Using developed static error signal detection method, P-HOE can be aligned very accurately with real time result of static error signals of pickup such as FES(focusing error signal) and TES(Tracking Error Signal). The developed static error signal detection method is verified by the evaluation of commercialized DVD Pickup. And finally. developed static error signal detection method is applied for the assembly of P-HOE in SFFOP system satisfies specification of BD(Blu-ray Disk).

  • PDF

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Stable isotope and rare earth element geochemistry of the Baluti carbonates (Upper Triassic), Northern Iraq

  • Tobia, Faraj Habeeb
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.975-987
    • /
    • 2018
  • Stable isotope ratios of $^{18}O/^{16}O$ and $^{13}C/^{12}C$ and rare earth elements geochemistry of the Upper Triassic carbonates from the Baluti Formation in Kurdistan Region of Northern Iraq were studied in two areas, Sararu and Sarki. The aim of the study is to quantify the possible diagenetic processes that postdated deposition and the paleoenvironment of the Baluti Formation. The replacement products of the skeletal grains by selective dissolution and neomorphism probably by meteoric water preserved the original marine isotopic signatures possibly due to the closed system. The petrographic study revealed the existence of foraminifers, echinoderms, gastropods, crinoids, nodosaria and ostracods as major framework constituents. The carbonates have micritic matrix with microsparite and sparry calcite filling the pores and voids. The range and average values for twelve carbonate rocks of ${\delta}^{18}O$ and ${\delta}^{13}C$ in Sararu section were -5.3‰ to -3.16‰ (-4.12‰) and -2.94‰ to -0.96‰ (-1.75‰), respectively; while the corresponding values for the Sarki section were -3.69‰ to -0.39‰ (-2.08‰) and -5.34‰ to -2.70‰ (-4.02‰), respectively. The bivariate plot of ${\delta}^{18}O$ and ${\delta}^{13}C$ suggests that most of these carbonates are warm-water skeletons and have meteoric cement. The average ${\Sigma}REE$ content and Eu-anomaly of the carbonates of Sararu sections were 44.26 ppm and 1.03, respectively, corresponding to 22.30 ppm and 0.93 for the Sarki section. The normalized patterns for the carbonate rocks exhibit: (1) non-seawater-like REE patterns, (2) positive Gd anomalies (average = 1.112 for Sararu and 1.114 for Sarki), (3) super chondritic Y/Ho ratio is 31.48 for Sararu and 31.73 for Sarki which are less than the value of seawater. The presence of sparry calcite cement, negative $^{13}C$ and $^{18}O$ isotope values, the positive Eu anomaly in the REE patterns (particularly for Sararu), eliminated Ce anomaly ($Ce/Ce^{\ast}$: 0.916-1.167, average = 0.994 and 0.950-1.010, average = 0.964, respectively), and Er/Nd values propose that these carbonates have undergone meteoric diagenesis. The REE patterns suggest that the terrigenous materials of the Baluti were derived from felsic to intermediate rocks.

Characteristics of wind loading on internal surface and its effect on wind-induced responses of a super-large natural-draught cooling tower

  • Zou, Yun-feng;Fu, Zheng-yi;He, Xu-hui;Jing, Hai-quan;Li, Ling-yao;Niu, Hua-wei;Chen, Zheng-qing
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.235-246
    • /
    • 2019
  • Wind loading is one of important loadings that should be considered in the design of large hyperbolic natural-draught cooling towers. Both external and internal surfaces of cooling tower are under the action of wind loading for cooling circulating water. In the previous studies, the wind loads on the external surface attracted concernedly attention, while the study on the internal surface was relatively ware. In the present study, the wind pressure on the internal surface of a 220 m high cooling tower is measured through wind tunnel testing, and the effect of ventilation rate of the packing layer on internal pressure is a major concern. The characteristics of internal wind pressure distribution and its effect on wind-induced responses calculated by finite element method are investigated. The results indicate that the wind loading on internal surface of the cooling tower behaves remarkable three-dimensional effect, and the pressure coefficient varies along both of height and circumferential directions. The non-uniformity is particularly strong during the construction stage. Analysis results of the effect of internal pressure on wind-induced responses show that the size and distribution characteristics of internal pressure will have some influence on wind-induced response, however, the outer pressure plays a dominant role in the wind-induced response of cooling tower, and the contribution of internal pressure to the response is small.

Development of Insert Metals for the Transient Liquid Phase Bonding in the Directional Solidified Ni Base Super Alloy GTD 111 (일방향응고 니켈기 초내열합금 GTD111에서 천이 액상확산 접합용 삽입금속의 개발에 관한 연구)

  • Lee, Bong-Keun;Oh, In-Seok;Kim, Gil-Moo;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.242-247
    • /
    • 2009
  • On the Transient Liquid Phase Bonding (TLPB) phenomenon with the MBF-50 insert metal at narrow gap (under 100), it takes long time for the bonding and the homogenizing. Typically, isothermal solidification is controlled by the diffusion of depressed element of B and Si. However, the amount of B and Si in the MBF-50 filler metal is large. This is reason of the long bonding time. Also, the MBF-50 filler metal did not contained Al and Ti which are ${\gamma}^{\prime}$ phases former. This is reason of the long homogenizing time. From the bonding phenomenon with the MBF-50 insert metal, we search main factors on the bonding mechanism and select several insert-metals for using the wide-gap TLPB. New insert-metals contained Al and Ti which are ${\gamma}^{\prime}$ phases former and decrease the B then the MBF-50. When the new insert-metal was used on the TLPB, the bonding time was decreased about 1/10 times and homogenizing heat treatment was no needed. In spite of the without homogenizing, the volume fraction of ${\gamma}^{\prime}$ phases in the boned interlayer was equal to homogenizing heat treated specimen which was TLPB with the MBF-50. Finally, the new insert metal named WG1 for the wide-gap TLPB is more efficient then the MBF-50 filler metal without decreasing the bonding characteristic.

A Study on the Network Text Analysis about Oral Health in Aging-Well

  • Seol-Hee Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.302-311
    • /
    • 2023
  • Background: Oral health is an important element of well aging. And oral health also affects overall health, mental health, and quality of life. In this study, we sought to identify oral health influencing factors and research trends for well-aging through text analysis of research on well-aging and oral health over the past 12 years. Methods: The research data was analyzed based on English literature published in PubMed from 2012 to 2023. Aging well and oral health were used as search terms, and 115 final papers were selected. Network text analysis included keyword frequency analysis, centrality analysis, and cohesion structure analysis using the Net-Miner 4.0 program. Results: Excluding general characteristics, the most frequent keywords in 115 articles, 520 keywords (Mesh terms) were psychology, dental prosthesis and Alzheimer's disease, Dental caries, cognition, cognitive dysfunction, and bacteria. Research keywords with high degree centrality were Dental caries (0.864), Quality of life (0.833), Tooth loss (0.818), Health status (0.727), and Life expectancy (0.712). As a result of community analysis, it consisted of 4 groups. Group 1 consisted of chewing and nutrition, Group 2 consisted oral diseases, systemic diseases and management, Group 3 consisted oral health and mental health, Group 4 consisted oral frailty symptoms and quality of life. Conclusion: In an aging society, oral dysfunction affects mental health and quality of life. Preventing oral diseases for well-aging can have a positive impact on mental health and quality of life. Therefore, efforts are needed to prevent oral frailty in a super-aging society by developing and educating systematic oral care programs for each life cycle.

Experiments on Stability of Armor Rocks on Rear Slope of Rubble Mound Structures under Wave Overtopping Condition with Rectangular Crest Element (월파조건에서 직사각형 상치콘크리트가 설치된 경사제 항내측 사면에 거치된 피복석의 안정성 실험)

  • Young-Taek Kim;Jong-In Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.5
    • /
    • pp.102-108
    • /
    • 2023
  • In this study, hydraulic model tests were performed to investigate the stability of armor units at harbor side slope for rubble mound structures. The armor units on the rear slope were rocks. The Korean design standard for harbor and fishery port suggested the design figures that showed the ratio of the armor weight for each location of rubble mound structures and it could be known that the same weight ratio was needed to the sea side and rear side slope of rubble mound structures. The crest elements were commonly applied to the design process of rubble mound structures in Korea and the investigation of the effects of super structures would be needed. The damage rate (S =2) was applied and the stable wave height was measured for each test condition. The results were suggested as the armor weight ratio of the rear side slope(armor rock) to the sea side slope (tetrapod) in relation to the relative crest height.

A study of Paul Klee's by of Bernard Cocula (꼬뀔라의 의미분석망에 의한 폴 클레의 "매직 스퀘어" 연구)

  • Lyu Jea-Gil
    • Journal of Science of Art and Design
    • /
    • v.1
    • /
    • pp.63-93
    • /
    • 1999
  • This treatise begins with finding a meaning of Paul Klee's . It is pretty simpleto choose the square of Klee. The most important formative language for twenty century is abstraction. The element of speaking for abstraction issquare. The artists are trying to contain the nature and universe in the square. The role of magic square consisting with small squares of Klee is crystallized. The other side, the test of this study is a method analysis. The method analysis is changing while concept and style have been changing according to a period. The existing method analysis is an iconology used many times in Art history. This treatise introduces France symbolists, Bernard Cocula and Claude Peyroutet's analysis of a meaning of image(Semantique do l'image) who were applied to Modern Art. based on Iconography. It also applies to analysis of artwork of Klee. Cocula's is developed from one phase to five phase step by step. The first phase deals with an appearance of artwork. Subsequently, the second phase is directly adjacent to personal feeling and impression. This is an adequate method for image study in the analysis of modern arts. This phase makes it a rule to enjoy talking with artworks above all. The third phase begins with this question 'What do you see? (que voyons-nous?).' The applies exhaustively and strictly to complicated image artworks which need an elaborate analysis. It is very hard but audiences must try to maintain neutrality in front of artwork because cord formation and interpretation should be formed objectively. The meaning analysis and interpretation of the forth phase begins with this question 'what is the image rouse'(qu'evoque cote image?).' This phase is the most important in a process of symbolic analysis. The audience investigates personal elements and common elements. The fifth is synthetic analysis and interpretation phase. The synthesis is last phase and it reaches a valuation and a conclusion. Namely, the synthesis phase makes up synthesis conclusion, summarizes image character, and completes value adjudication. Sometimes it completes no conclusions in a silence. This study found a new possible analysis example from Paul Klee's work. The study emphasizes square analysis and interpretation and uses . The analysis of artwork by Cocula's is an example of the most important work of Klee's three artworks. The first analysis of artwork is and the second one is . The third one is . In these analyses, Klee usedmagic square 'to make natural pictorial element and to explain organic living things.'

  • PDF

Finite Element Stress Analysis on the Supporting Tissues depending upon the Position of Osseointegrated Implants Supporting Fixed Bridges (고정성 보철물을 지지하는 골유착성 임플란트의 위치에 따른 지지조직에서의 유한요소적 응력분석)

  • Yoon, Dong-Joo;Shin, Sang-Wan;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.87-99
    • /
    • 1993
  • Many studies have been reported on the successful replacement of missing teeth with osseointegrated dental Implants. However, little research has been carried out on the bio-mechanical aspect of the stress on the surrounding bone of the free-standing type of dental implant prostheses. This experimental study was aimed to analyze the stress distribution pattern on the supporting tissues depending upon the position of osseointegrated implants supporting fixed bridges. In the cases of unilateral partially edentulous mandible (the 2nd premolar and the 1st and 2nd molars missing), two osseointegrated implants were placed at the 2nd premolar and 2nd molar sites (Model A) , the 1st and 2nd molar sites (Model B, Anterior cantilevered type), the 2nd premolar and 1st molar sites (Model C, Posterior cantilevered type). Chewing forces of dentate patients and denture wearer were applied vertically on the 2nd premolar, the 1st molar, and the 2nd molar of each model. A 3-Unit fixed partial denture was constructed at each model and cantilevered extension parts were involved in Model B and Model C. Two dimensional finite element analysis was undertaken. The commercial software (Super SAP) for IBM 16 bit personal computer was utilized. The results were as follows : 1. The magnitude of applied load influenced on the total value of stresses, but did not in-fluence on the pattern of stress distribution. 2. The magnitude of stress developed from the supporting tissues were in order of Model C,Model A,Model B. 3. High stresses were concentrated on the cervical and apical portion of the implant/bone interface. 4. A difference of the stress magnitude on the implant/bone interface between mesial and distal implant was most prominant in Model C and in order of Model A and Model B. 5. The stresses developed in Model A were evenly distributed throughout both implants. 6. The stresses concentrated on the cervical portion of cantilevered side were higher in the posterior cantilevered type than in the anterior cantilevered type.

  • PDF

Development of A Component and Advanced Model for The Smart PR-CFT Connection Structure (스마트 반강접 (PR) 콘크리트 충전 강재 합성 (CFT) 접합 구조물에 대한 해석모델의 개발)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study investigates the performance of composite (steel-concrete) frame structures through numerical experiments on individual connections. The innovative aspects of this research are in the use of connections between steel beams and concrete-filled tube (CFT)columns that utilize a combination of low-carbon steel and shape memory alloy (SMA) components. In these new connections, the intent is to utilize the recentering provided by super-elastic shape memory alloy tension bars to reduce building damage and residual drift after a major earthquake. The low-carbon steel components provide excellent energy dissipation. The analysis and design of these structures is complicated because the connections cannot be modeled as being simply pins or full fixity ones they are partial restraint (PR). A refined finite element (FE) model with sophisticated three dimensional (3D) solid elements was developed to conduct numerical experiments on PR-CFT joints to obtain the global behavior of the connection. Based on behavioral information obtained from these FE tests, simplified connection models were formulated by using joint elements with spring components. The behavior of entire frames under cyclic loads was conducted and compared with the monotonic behavior obtained from the 3D FE simulations. Good agreement was found between the simple and sophisticated models, verifying the robustness of the approach.