DOI QR코드

DOI QR Code

Experiments on Stability of Armor Rocks on Rear Slope of Rubble Mound Structures under Wave Overtopping Condition with Rectangular Crest Element

월파조건에서 직사각형 상치콘크리트가 설치된 경사제 항내측 사면에 거치된 피복석의 안정성 실험

  • Young-Taek Kim (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jong-In Lee (Department of Civil Engineering, Chonnam National University)
  • 김영택 (한국건설기술연구원 수자원하천연구본부) ;
  • 이종인 (전남대학교 공과대학 토목공학과)
  • Received : 2023.10.20
  • Accepted : 2023.10.27
  • Published : 2023.10.31

Abstract

In this study, hydraulic model tests were performed to investigate the stability of armor units at harbor side slope for rubble mound structures. The armor units on the rear slope were rocks. The Korean design standard for harbor and fishery port suggested the design figures that showed the ratio of the armor weight for each location of rubble mound structures and it could be known that the same weight ratio was needed to the sea side and rear side slope of rubble mound structures. The crest elements were commonly applied to the design process of rubble mound structures in Korea and the investigation of the effects of super structures would be needed. The damage rate (S =2) was applied and the stable wave height was measured for each test condition. The results were suggested as the armor weight ratio of the rear side slope(armor rock) to the sea side slope (tetrapod) in relation to the relative crest height.

본 연구에서는 경사제 항내측 사면에 거치된 피복재의 안정성에 대한 단면수리실험을 수행하였으며, 항내 측 피복재로는 피복석을 적용하였다. 국내 항만 및 어항설계기준에서는 항내측 피복재의 중량산정 방법으로 상치콘크리트가 설치되지 않은 조건에 대하여 항내측 일부구간을 항외측 피복재와 동일 중량비의 피복재를 사용하도록 설계 도표로 제시하고 있다. 국내에 설계되는 대부분의 경사식 구조물은 상치콘크리트가 설치되어 있으며, 이에 대한 안정중량 산정 방법이 필요하다. 피해율 S = 2를 기준으로 안정파고를 산정하여 안정성을 검토하였으며, 소요중량은 상대여유고에 대한 항외측 피복재(테트라포드) 대비 항내측 피복석의 중량비로 제시하였다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원 "(23주요-대1-목적)기후위기 대응 물문제 해결형 이슈 발굴 및 미래선도 기술 개발" 및 한국에너지기술평가원의 연구비 지원(과제번호: 20224B10200040)을 받아 수행되었으며, 연구비 지원에 감사드립니다.

References

  1. CIRIA, CUR and CETMEF. (2007). The rock manual: The use of rock in hydraulic engineering, CIRIA Publication. 
  2. Goda, Y. and Suzuki, Y. (1976). Estimation of incident and reflected waves in random wave experiments. Coastal Engineering 1976, 828-845. 
  3. Hudson, R.Y. (1959). Laboratory investigation of rubble-mound breakwaters. Journal of Waterways and Harbors Division, ASCE, 85(WW3), 93-121.  https://doi.org/10.1061/JWHEAU.0000142
  4. Kim, Y.T. and Lee, J.I. (2021). Experiments on stability of tetrapods on rear slope of rubble mound structures under wave overtopping condition. Journal of Korean Society of Coastal and Ocean Engineers, 33(6), 357-366 (in Korean).  https://doi.org/10.9765/KSCOE.2021.33.6.357
  5. Kudale, M.D. and Kobayashi, N. (1996). Hydraulic stability analysis of leeside slopes of overtopped breakwaters. Coastal Engineering 1996, 1721-1734. 
  6. Ministry of Oceans and Fisheries (2023). Design standard of harbor and fishery ports. 
  7. US Army Corps of Engineers (1984). Shore Protection Mannual. 
  8. van der Meer, J.W. and Pilarczyk, K.W. (1990). Stability of lowcrested and reef breakwaters. Coastal Engineering 1990, ASCE, 1375-1388. 
  9. van Gent, M.R.A. and Pozueta, B. (2004). Rear-side stability of rubble mound structures. Coastal Engineering 2004, ASCE, 4, 3481-3493. 
  10. van Gent, M.R.A. (2007). Rear-side stability of rubble mound structures with crest elements. Coastal Structures 2007, 19-30. 
  11. Verhagen, H.J. van Dijk, H. and Nederpel, A. (2003). Riprap stability on the inner slopes of medium-height breakwaters. Coastal Structures 2003, 213-222. 
  12. Vidal, C., Losada, M.A. and Medina, R. (1992). A universal analysis for the stability of both low-crested and submerged breakwaters. Coastal Engineering 1992, 1679-1692.