• Title/Summary/Keyword: Super Duplex Stainless Steel

Search Result 58, Processing Time 0.221 seconds

Effect of σ-phase on Intergranular Corrosion of Super Duplex Stainless Steel Weld Metal (슈퍼듀플렉스강 용접금속의 입계부식에 미치는 σ 상의 영향)

  • Lee, Jae-Hyoung;Jung, Byong-Ho;Seo, Gi-Jeong;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.293-299
    • /
    • 2013
  • A specimen of weld metal was prepared by GTA welding with weld wire of super duplex stainless steel. Aging treatment was conducted for the sample at the temperature range of 700 to $900^{\circ}C$ for 5 to 300 minutes. The effect of volume fraction of ${\sigma}$-phase to intergranular corrosion of weld metal has been investigated and the results were derived as follows. The volume fraction of ${\sigma}$ phase tends to increase with an increase of aging temperature and time and intergranular corrosion of weld metal was increased by an increase of ${\sigma}$ phase. Degree of sensitization representing intergranular corrosion was found to tend to increase with an increase of aging time at 700 to $800^{\circ}C$, while it decreased by an increase of aging time at $900^{\circ}C$.

Mechanical Characteristics and Fatigue Crack Propagation of Super Duplex Stainless Steel by Distribution of Austenite (오스테나이트 분포에 따른 수퍼 2상 스테인리스강의 기계적 특성과 피로균열 진전거동)

  • Do, J.Y.;Lee, S.K.;Ahn, S.H.;Nam, K.W.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.205-211
    • /
    • 2001
  • The characteristics of super duplex stainless steel were investigated on its fibrous structure and dispersed structure. These structures consist of various volume fractions and distributions of the austenite phase that were obtained by changing the heat treatment temperature and cycle. The fibrous structure had higher austenite volume fraction than dispersed structure on the same temperature. As the austenite volume fraction increased in both structures, tensile strength and elongation increased, but hardness decreased. Fatigue life of fibrous structure parallel to rolling direction was shorter than that of perpendicular to rolling direction. Fatigue life of dispersed structure was longer than parallel fibrous structure, and shorter than perpendicular fibrous structure. Fatigue crack propagation rate of fibrous structure was faster than that of dispersed structure.

  • PDF

Effect of Aging Treatment on Pitting Corrosion of Super Duplex Stainless Steel Weld Metal (슈퍼듀플렉스강 용접금속의 공식에 미치는 시효처리의 영향)

  • Lee, Jae-Hyoung;Seo, Gi-Jeong;Jung, Byong-Ho;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • A specimen of weld metal was prepared by GTA welding with weld wire of super duplex stainless steel. Aging treatment was conducted for the sample at the temperature range of 700 to $900^{\circ}C$ for 5 to 300 minutes. The effect of aging temperature and time to pitting corrosion of weld metal has been investigated and the results were derived as follows. The volume fraction of ${\sigma}$ phase tends to increase with an increase of aging temperature and time. Pitting potential Ep representing pitting corrosion was found to tend to decrease with an increase of aging time at 700 to $900^{\circ}C$. And most of the pits formed near the ${\sigma}$-phase in the ferrite and seemed to propagated to austenite.

Effect of R Phase Formation on the Mechanical Properties of 25Cr-7Ni-2Mo-4W Super Duplex Stainless Steel (25Cr-7Ni-2Mo-4W 슈퍼 2상 스테인리스강의 기계적 성질에 미치는 R상의 영향)

  • Lee, Byung-Chan;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.401-406
    • /
    • 2014
  • In this study, we investigated the precipitation behavior of the R-phase precipitated at the initial stage of aging and its effects on the mechanical properties of 25%Cr-7%Ni-2%Mo-4%W super duplex stainless steel. The R-phase was mainly precipitated at the interface of ferrite/austenite phases and inside of the ferrite phase during the initial stage of aging. It was transformed into the ${\sigma}$-phase with an increase of the aging time. The ferrite phase was decomposed into a new austenite(${\gamma}_2$)phase and the ${\sigma}$-phase by an aging treatment. The R phase was an intermetallic compound showing higher molybdenum and tungsten concentrations than the matrix and also showed higher molybdenum and tungsten concentrations than the ${\sigma}$ phase. In the initial stage of aging, precipitation of the R-phase did not change the hardness, the strength and the elongation. The hardness and the strength increased upon a longer aging time, but the elongation rapidly decreased. These results show that the R-phase did not significantly affect the hardness and the strength, though it did influence the elongation.

Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power

  • Gutierrez-Vargas, Gildardo;Ruiz, Alberto;Kim, Jin-Yeon;Lopez-Morelos, Victor H.;Ambriz, Ricardo R.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1816-1821
    • /
    • 2019
  • This research investigates the feasibility of using the thermoelectric power to monitor the thermal embrittlement in 2507 super duplex stainless steel (SDSS) exposed to a temperature between $280^{\circ}C$ and $500^{\circ}C$. It is well known that the precipitation of Cr-rich ${\alpha}^{\prime}$ phase as a result of the spinodal decomposition is the major cause of the embrittlement and the loss of corrosion resistance in this material. The specimens are thermally aged at $475^{\circ}C$ for different holding times. A series of mechanical testing including the tensile test, Vickers microhardness measurement, and Charpy impact test are conducted to determine the property changes with holding time due to the embrittlement. The mechanical strengths and ferrite hardness exhibit very similar trends. Scanning electron microscopy images of impactfractured surfaces reveal a ductile to brittle transition in the fracture mode as direct evidence of the embrittlement. It is shown that the thermoelectric power is highly sensitive to the thermal embrittlement and has an excellent linear correlation with the ferrite hardness. This paper, therefore, demonstrates that the thermoelectric power is an excellent nondestructive evaluation technique for detecting and evaluating the $475^{\circ}C$ embrittlement of field 2507 SDSS structures.

Effect of χ Phase Formation on the Mechanical Properties of 25Cr-7Ni-4Mo-0.2N Super Duplex Stainless Steel (25Cr-7Ni-4Mo-0.2N 슈퍼 2상 스테인리스강의 기계적 성질에 미치는 χ상의 영향)

  • Kang, Chang Yong;Kim, Jae Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.197-202
    • /
    • 2011
  • This study was carried out to investigate the precipitation behavior of ${\chi}$ phase and effect of ${\chi}-phase$ which precipitated at the initial stage of aging on mechanical properties of 25%Cr-7%Ni-4%Mo-0.2%N super duplex stainless steel. ${\chi}-phase$ was precipitated mainly at the interface of ferrite / austenite phases and inside of the ferrite phase at the initial stage of aging, and it was transformed into ${\sigma}-phase$ with an increase of aging time. The ferrite phase was decomposed into new $austenite({\gamma}_2)phase$ and ${\sigma}-phase$ by aging treatment. The hardness and tensile strength of the initial stage of aging when ${\chi}-phase$ was precipitated did not changed considerably, while elongation rapidly decreased. Accordingly, it is considered that ${\chi}-phase$ didn't affect the hardness and strength significantly, but it affected the elongation.

Microstructure and Impact Toughness of Weld Metal in Multipass Welded Super Duplex Stainless Steel (다층용접한 슈퍼 듀플렉스 스테인리스강 용접금속의 조직 및 충격인성)

  • Seo, Won-Chan;Park, Chan;Bang, Kook-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.27-32
    • /
    • 2012
  • The effects of reheating during welding on the microstructure and impact toughness of weld metal in 25% Cr super duplex stainless steels were investigated. Using different heat inputs, weld metals with different reheated regions were obtained. This showed that, depending on the reheating temperature, the microstructure in the reheated region was quite different from that of the as-deposited microstructure. When reheated into the ${\gamma}+{\alpha}$ temperature range, fine intragranular austenite was formed in the as-deposited columnar structure. However, when reheated above the ${\alpha}$ solvus temperature range, most of the columnar structure disappeared and fine equiaxed austenite and ferrite were formed. Because of the larger amount of fine austenite in the reheated region, a higher impact toughness was obtained in the weld metal with a higher amount of reheated region.

Low-temperature Mechanical Behavior of Super Duplex Stainless Steel Considering High Temperature Environment (고온 환경의 영향을 고려한 슈퍼듀플렉스 강의 저온 기계적 거동 평가)

  • Kim, Myung-Soo;Jung, Won-Do;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.306-313
    • /
    • 2014
  • Super duplex stainless steels (sDSS) are excellent for use under severely corrosive conditions such as offshore and marine applications like pipelines and flanges. sDSS has better mechanical properties and corrosion resistance than the standard duplex stainless steel (DSS) but it is easier for a sigma phase to appear, which depresses the mechanical property and corrosion resistance, compared to DSS, because sDSS has a higher alloy element than DSS. In addition, sDSS has a feeble ductile-brittle transition temperature (DBTT) because it has a 50% ferrite microstructure. In the actual operating environment, sDSS would be thermally affected by welding and a sub-zero temperature environment. This study analyzed how precipitated sDSS behaves at a sub-zero temperature through annealing heat treatment and a sub-zero tensile test. Six types of specimens with annealing times of up to 60 min were tested in a sub-zero chamber. According to the experimental results, an increase in the annealing time reduced the elongation of sDSS, and a decrease in the tensile test temperature raises the flow stress and tensile stress. In particular, the elongation of specimens annealed for 15 min and 30 min was clearly lowered with a decrease in the tensile test temperature because of the increasing sigma phase fraction ratio.

A Study on Characteristics of Dissimilar Welds between Super Duplex Stainless Steel UNS S32750 and Carbon Steel A516-70 with FCAW (슈퍼듀플렉스 스테인리스강 UNS S32750과 탄소강 A516-70의 이종금속 FCA 용접 특성에 대한 연구)

  • Moon, In-June;Jang, Bok-Su;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.26-33
    • /
    • 2014
  • The metallurgical and mechanical characteristics, toughness and corrosion resistance of dissimilar welds between super duplex stainless steel UNS S32750 and carbon steel ASTM A516Gr.70 have been evaluated. Three heat inputs of 21.12, 24.00, 26.88kJ/cm were employed to make joints of dissimilar metals with flux cored arc welding(FCAW). Based on microstructural examination, vermicular ferrite was formed in the first layer of weld at low heat input(21.12kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.61 while acicular ferrite was formed in last layer of weld at high heat input(26.88kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.72. Ferrite percentage in dissimilar welds was lowest in the first layer of weld regardless of heat inputs and it gradually increased in the second and third layers of weld. Heat affected zone showed higher hardness than the weld metal although reheated zone showed lower hardness than weld metal due to the formation of secondary austenite. Tensile strengths of dissimilar welds increased with heat input and there was 100MPa difference. The corrosion test by ferric chloride solution showed that carbon steel had poor corrosion resistance and pitting corrosion occurred in the first layer(root pass) of weld due to the presence of reheated zone where secondary austenite was formed. The salt spray test of carbon steel showed that the surface only corroded but the amount of weight loss was extremely low.

Effects of post weld heat treatment conditions on localized corrosion resistance of super duplex stainless steel tube used for thermal power plant applications (화력발전용 슈퍼 듀플렉스 스테인리스 강 조관재의 용접 후 열처리 조건이 국부부식 저항성에 미치는 영향)

  • Lee, Jun Ho;Park, Jin sung;Cho, Dong Min;Hong, Seung Gab;Kim, Sung Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.248-259
    • /
    • 2021
  • This study examined the influence of post weld heat treatment (PWHT) conditions on corrosion behaviors of laser-welded super duplex stainless steel tube. Due to the high cooling rate of laser welding, the phase fraction of ferrite and austenite in the weld metal became unbalanced significantly. In addition, the Cr2N particles were precipitated adjacent to the fusion line, which can be susceptible to the localized corrosion. On the other hand, the phase fraction in the weld metal was restored at a ratio of 5:5 when exposed to temperatures above 1060 ℃ during the post weld heat treatment. Nevertheless, the high beltline speed during the PWHT, leading to the insufficient cooling rate, caused a precipitation of σ phase at the interface between ferrite/austenite in both weld metal and base metal. This resulted in the severe corrosion damages and significant decrease in critical pitting temperature (CPT), which was even lower than that measured in as-welded condition. Moreover, the fraction of σ phase in the center region of post weld heat treated steel tube was obtained to be higher than in the surface region. These results suggest that the PWHT conditions for the steel tube should be optimized to ensure the high corrosion resistance by excluding the precipitation of σ phase even in center region.