Browse > Article
http://dx.doi.org/10.1016/j.net.2019.05.017

Evaluation of thermal embrittlement in 2507 super duplex stainless steel using thermoelectric power  

Gutierrez-Vargas, Gildardo (Instituto de Investigacion en Metalurgia y Materiales, UMSNH)
Ruiz, Alberto (Instituto de Investigacion en Metalurgia y Materiales, UMSNH)
Kim, Jin-Yeon (GWW School of Mechanical Engineering, Georgia Institute of Technology)
Lopez-Morelos, Victor H. (Instituto de Investigacion en Metalurgia y Materiales, UMSNH)
Ambriz, Ricardo R. (Instituto Politecnico Nacional, CIITEC-IPN)
Publication Information
Nuclear Engineering and Technology / v.51, no.7, 2019 , pp. 1816-1821 More about this Journal
Abstract
This research investigates the feasibility of using the thermoelectric power to monitor the thermal embrittlement in 2507 super duplex stainless steel (SDSS) exposed to a temperature between $280^{\circ}C$ and $500^{\circ}C$. It is well known that the precipitation of Cr-rich ${\alpha}^{\prime}$ phase as a result of the spinodal decomposition is the major cause of the embrittlement and the loss of corrosion resistance in this material. The specimens are thermally aged at $475^{\circ}C$ for different holding times. A series of mechanical testing including the tensile test, Vickers microhardness measurement, and Charpy impact test are conducted to determine the property changes with holding time due to the embrittlement. The mechanical strengths and ferrite hardness exhibit very similar trends. Scanning electron microscopy images of impactfractured surfaces reveal a ductile to brittle transition in the fracture mode as direct evidence of the embrittlement. It is shown that the thermoelectric power is highly sensitive to the thermal embrittlement and has an excellent linear correlation with the ferrite hardness. This paper, therefore, demonstrates that the thermoelectric power is an excellent nondestructive evaluation technique for detecting and evaluating the $475^{\circ}C$ embrittlement of field 2507 SDSS structures.
Keywords
Thermoelectric power; Super duplex stainless steel; $475^{\circ}C$ embrittlement; Nondestructive evaluation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.-O. Nilsson, Super duplex stainless steels, Mater. Sci. Technol. 8 (1992) 685-700.   DOI
2 D. Chandra, L.H. Schwartz, Mossbauer effect study of the $475{\ddag}C$ decomposition of Fe-Cr, Metallurgical Transactions 2 (1971) 511-519.   DOI
3 P.J. Grobner, The 885 f (475c) embrittlement of ferritic stainless steels, Metallurgical Transactions 4 (1973) 251-260.   DOI
4 F. Iacoviello, F. Casari, S. Gialanella, Effect of "$475^{\circ}C$ embrittlement" on duplex stainless steels localized corrosion resistance, Corros. Sci. 47 (2005) 909-922.   DOI
5 C.-J. Park, H.-S. Kwon, Effects of aging at $475^{\circ}C$ on corrosion properties of tungsten-containing duplex stainless steels, Corros. Sci. 44 (2002) 2817-2830.   DOI
6 J.W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961) 795-801.   DOI
7 H.M. Chung, Aging and life prediction of cast duplex stainless steel components, Int. J. Press. Vessel. Pip. 50 (1992) 179-213.   DOI
8 A. Isalgue, M. Anglada, J. Rodriguez-Carvajal, A. De Geyer, Study of the spinodal decomposition of an Fe-28Cr-2Mo-4Ni-Nb alloy by small-angle neutron scattering, J. Mater. Sci. 25 (1990) 4977-4980.   DOI
9 L. Llanes, A. Mateo, L. Iturgoyen, M. Anglada, Aging effects on the cyclic deformation mechanisms of a duplex stainless steel, Acta Mater. 44 (1996) 3967-3978.   DOI
10 A.F. Padilha, R.L. Plaut, P.R. Rios, Stainless steel heat treatment, in: G.E. Totten (Ed.), Steel Heat Treatment: Metallurgy and Technologies, CRC Press, 2006.
11 F. Umemura, M. Akashi, T. Kawamoto, Evaluation of IGSCC susceptibility of austenitic stainless steels using electrochemical reactivation method, Boshoku Gijutsu 29 (1980) 163-169.
12 J.S. Park, Y.K. Yoon, Evaluation of thermal aging embrittlement of duplex stainless steels by electrochemical method, Scripta Metall. Mater. 32 (1995) 1163-1168.   DOI
13 A.N. Lasseigne, D.L. Olson, H.-J. Kleebe, T. Boellinghaus, Microstructural assessment of nitrogen-strengthened austenitic stainless-steel welds using thermoelectric power, Metall. Mater. Trans. A 36 (2005) 3031-3039.   DOI
14 W. Morgner, Introduction to thermoelectric nondestructive testing, Mater. Eval. 49 (1991) 1081-1088.
15 P.B. Nagy, Non-destructive methods for materials' state awareness monitoring, Insight - Non-Destructive Testing and Condition Monitoring 52 (2010) 61-71.   DOI
16 N. Ortiz, F.F. Curiel, V.H. Lopez, A. Ruiz, Evaluation of the intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with thermoelectric power measurements, Corros. Sci. 69 (2013) 236-244.   DOI
17 Y. Kawaguchi, S. Yamanaka, Applications of thermoelectric power measurement to deterioration diagnosis of nuclear material and its principle, J. Nondestruct. Eval. 23 (2004) 65-76.   DOI
18 Y. Kawaguchi, S. Yamanaka, Mechanism of the change in thermoelectric power of cast duplex stainless steel due to thermal aging, J. Alloy. Comp. 336 (2002) 301-314.   DOI
19 J. Fulton, B. Wincheski, M. Namkung, Automated Weld Characterization Using the Thermoelectric Method, NASA, Nasa Technical Report Server, 1992.
20 N.O. Lara, A. Ruiz, C. Rubio, R.R. Ambriz, A. Medina, Nondestructive assessing of the aging effects in 2205 duplex stainless steel using thermoelectric power, NDTE Int. 44 (2011) 463-468.   DOI
21 J. Hu, P.B. Nagy, On the role of interface imperfections in thermoelectric nondestructive materials characterization, Appl. Phys. Lett. 73 (1998) 467-469.   DOI
22 K.L. Weng, H.R. Chen, J.R. Yang, The low-temperature aging embrittlement in a 2205 duplex stainless steel, Mater. Sci. Eng. A 379 (2004) 119-132.   DOI
23 G. Gutierrez-Vargas, A. Ruiz, J.-Y. Kim, L.J. Jacobs, Characterization of thermal embrittlement in 2507 super duplex stainless steel using nonlinear acoustic effects, NDTE Int. 94 (2018) 101-108.   DOI
24 K. Chandra, R. Singhal, V. Kain, V.S. Raja, Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior, Mater. Sci. Eng. A 527 (2010) 3904-3912.   DOI
25 A. Mateo, L. Llanes, M. Anglada, A. Redjaimia, G. Metauer, Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel, J. Mater. Sci. 32 (1997) 4533-4540.   DOI
26 H. Kokawa, M. Shimada, Y.S. Sato, Grain-boundary structure and precipitation in sensitized austenitic stainless steel, JOM 52 (2000) 34-37.
27 S. Rahimi, D.L. Engelberg, T.J. Marrow, A new approach for DL-EPR testing of thermo-mechanically processed austenitic stainless steel, Corros. Sci. 53 (2011) 4213-4222.   DOI
28 R. Silva, L.F.S. Baroni, C.L. Kugelmeier, M.B.R. Silva, S.E. Kuri, C.A.D. Rovere, Thermal aging at $475^{\circ}C$ of newly developed lean duplex stainless steel 2404: mechanical properties and corrosion behavior, Corros. Sci. 116 (2017) 66-73.   DOI
29 J.P. Massoud, J.-F. Coste, J.-M. Leborgne, D. Aiguier, P. Viral, Thermal Aging of PWR Duplex Stainless Steel Components Development of a Thermoelectrical Technique as a Non Destructive Evaluation Method of Aging, 7th International Conference on Nuclear Engineering, JSME, Tokyo, Japan, 1999, pp. 1-9.