• Title/Summary/Keyword: Sunspot group

Search Result 27, Processing Time 0.023 seconds

THE RELATIVE SUNSPOT NUMBERS IN 1995 (1995년 흑점 상대수)

  • Sim, Gyeong-Jin;Mun, Heung-Gyu
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.251-261
    • /
    • 1996
  • We analyze 280 data of the daily sunspot observations during the period of January 1 to December 31 in 1995 and present the daily relative sunspot numbers. During the 1995, the preliminary annual average of the relative sunspot numbers is found to be 20.1 based on 7.9 distinct spots in a single group for 1.3 spot groups. According to the appearance of 366 spot groups, our analysis shows that the mean life time of spot group is about 5 day and 10.1 hours.

  • PDF

THE RELATIVE SUNSPOT NUMBERS IN 1996 (1996년 혹점 상대수)

  • Sim, Kyung-Jin
    • Publications of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.23-33
    • /
    • 1997
  • We have analyzed 223 data of the daily sunspot observations during the period of January 1 to December 31 in 1996 and present the daily relative sunspot numbers. During the 1996, the preliminary annual average of the relative sunspot numbers found to be 8.8 based on 3.7 distinct spots in a single group for 0.6 spot groups According to the appearance of 123 spot groups, our analysis shows that the mean life time of spot group is about 5 day and 5.8 hours. The proper conversion factor of the Korea Astronomy Observatory(KAO) derived from a comparison of one thousand one hundred and eighty observational sunspot numbers from 1992 to 1996 with those of international sunspot numbers is determined to be 1.17 instead of 0.97 which is in use.

  • PDF

THE RELATIVE SUNSPOT NUMBERS IN 1999 (1999년 흑점 상대수)

  • SIM KYUNG JIN
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.1
    • /
    • pp.21-29
    • /
    • 2000
  • We have analyzed 221 data of daily sunspot observations made during the period of January 1 to December 30 in 1999 and presented the daily relative sunspot numbers. During the year of 1999, our annual average of relative sunspot numbers is found to be 130.1. This number is obtained from the averaged daily number of 6.7 spot groups, in which there are about 45.9 distinct spots observed. According to the appearance of 384 spot groups, our analysis shows that the mean life time of spot group is about 5 day and 4.6 hours.

  • PDF

Active Days around Solar Minimum and Solar Cycle Parameter

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Utilizing a new version of the sunspot number and group sunspot number dataset available since 2015, we have statistically studied the relationship between solar activity parameters describing solar cycles and the slope of the linear relationship between the monthly sunspot numbers and the monthly number of active days in percentage (AD). As an effort of evaluating possibilities in use of the number of active days to predict solar activity, it is worthwhile to revisit and extend the analysis performed earlier. In calculating the Pearson's linear correlation coefficient r, the Spearman's rank-order correlation coefficient rs, and the Kendall's τ coefficient with the rejection probability, we have calculated the slope for a given solar cycle in three different ways, namely, by counting the spotless day that occurred during the ascending phase and the descending phase of the solar cycle separately, and during the period corresponding to solar minimum ± 2 years as well. We have found that the maximum solar sunspot number of a given solar cycle and the duration of the ascending phase are hardly correlated with the slope of a linear function of the monthly sunspot numbers and AD. On the other hand, the duration of a solar cycle is found to be marginally correlated with the slope with the rejection probabilities less than a couple of percent. We have also attempted to compare the relation of the monthly sunspot numbers with AD for the even and odd solar cycles. It is inconclusive, however, that the slopes of the linear relationship between the monthly group numbers and AD are subject to the even and odd solar cycles.

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

THE RELATIVE SUNSPOT NUMBERS IN 1993 (1993년 흑점 상대수)

  • Sim, Gyeong-Jin
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.153-161
    • /
    • 1993
  • We analyze 211 data of the daily sunspot observations during the period of January 4 to November 30 in 1993 and present the daily relative sunspot numbers. During 334 days of the period, the preliminary annual average of the relative sunspot numbers is found to be 61.8 based on 27.1 distinct spots in a single group for 3.7 spot groups. According to the appearance of 203 spot groups, our analysis shows that the mean life time of spot group is about 1 day and 15.5 hours. Our records show that more number of sunspots have appeared in the southern hemisphere than in the northern hemisphere by some 2%, indicating that the solar activities of the northern and southern hemisphere are much the same during the period.

  • PDF

SUNSPOT MOTIONS ASSOCIATED WITH THE 3B/X1.5 SOLAR FLARE OF 13 MAY 1981

  • WANG JIA LONG;ZHANG GUIQING;MA GUANYI;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.2
    • /
    • pp.217-221
    • /
    • 1996
  • We have examined morphological change and movements of individual sunspots within a sunspot group in association with a large solar flare activity (3B/X1.5) appeared on 13 May 1981. For this purpose we measured distance among spots during the period before and after the flare activity and estimated the average velocity of their movement. Our main results are as follows: (1) The longitudinal displacement among sunspots are generally greater than the latitudinal displacement. (2) During the period the spots moved with an average velocity of 1.2 km/s in longitude and 0.86 km/s in latitude. (3) The most notable change took place in the central part placed between the two ribbons of the flare.

  • PDF

Relative Sunspot Number Observed from 2002 to 2011 at ButterStar Observatory

  • Oh, Sung-Jin;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.103-113
    • /
    • 2012
  • The ButterStar Observatory at the Dongducheon High School has been working for photographic observations of the Sun since October 16, 2002. In this study, we observed the Sun at the ButterStar observatory for 3,364 days from October 16, 2002 to December 31, 2011, and analyzed the photographic sunspot data obtained in 1,965 days. The correction factor $K_b$ for the entire observing period is 0.9519, which is calculated using the linear least square method to the relationship between the daily sunspot number, $R_B$, and the daily international relative sunspot number, $R_i$. The yearly correction factor calculated for each year varies slightly from year to year and shows a trend to change along the solar cycle. The correction factor is larger during the solar maxima and smaller during the solar minima in general. This implies that the discrepancy between a relative sunspot number, R, and the daily international relative sunspot number, $R_i$, can be reduced by using a yearly correction factor. From 2002 to 2008 in solar cycle 23, 35.4% and 64.6% of sunspot groups and 35.1% and 64.9% of isolated sunspots in average occurred in the northern hemisphere and in the southern hemisphere, respectively, and from 2008 to 2011 in solar cycle 24, 61.3% and 38.7% of sunspot groups and 65.0% and 35.0% of isolated sunspots were observed, respectively. This result shows that the occurrence frequency for each type of sunspot group changes along the solar cycle development, which can be interpreted as the emerging and decaying process of sunspot groups is different depending on the phase of solar cycle. Therefore, it is considered that a following study would contribute to the efforts to understand the dependence of the dynamo mechanism on the phase of solar cycle.

EVOLUTION OF SUNSPOTS BASED ON VECTOR MAGNETOGRAM AND $H\beta$ FILTERGRAM OBSERVATION

  • LEE SANG WOO;YUN HONG SIK;MOON YONG JAE;WANG JIA LONG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • We have analyzed vector magnetograms and $H\beta$ filtergrams of two sunspot groups, one in a growing phase and the other in a decaying phase. In this study, the temporal evolution of their magnetic morphology has been investigated in association with solar activity. The morphological variations of the growing and decaying phase of these sunspots revealed in detail the coalescence of small spots into a large spot and the fragmentation of a large spot into many small spots, respectively. Numerous small flares were detected in the spot group during the decaying phase. This seems to be intimately associated with the shearing motions of many spots with different polarities created by fragmentation of a large sunspot. The magnetic flux and the average shear angle are found to be substantially reduced during the decaying phase, especially in the course of the flarings. This implies that the decaying phase of the sunspot is, to some degree, involved with magnetic field cancellation. The growing spot group has not shown any large activities, but numerous small spots have grown into a typical bipolar sunspot.

  • PDF

SUNSPOT EVOLUTION IN THE VICINITY OF A LARGE SOLAR FLARE IN AR 6891

  • ALMLEAKY Y. M.;MALAWI A. A.;BASURAH H. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.317-319
    • /
    • 1996
  • Utilizing a Calcium filter, a large two ribbon flare of an importance 2.5Xj31? was recorded at. King Abdul-Aziz University Solar Observatory (KAAUSO) at the 30th of October 1991. This chromosphenc flare observation, which is of special importance since it is rarely reported, was for a flare that occurred near the south west of the equator at the vicinity of a large sunspot group on an active region known as AR 6891. The observed foot points of this flare had a strange behavior in which the separating motion of the ribbons were not typical of most flares, rather were nearly orthogonal. In this article we present the characteristics of the main sunspot group of this active region and try to investigate its evolution and fragmentation with time. Information regarding magnetic fields and velocity fields are necessary to understand the restructuring of the magnetic field pattern and plasma motion, and hence the changes that could lead to the occurrence of such an interesting flare.

  • PDF