• Title/Summary/Keyword: Sun tracking

Search Result 552, Processing Time 0.029 seconds

Development of Active Tracking Algorithm for High Efficiency PV system (고효율 태양광 발전 시스템을 위한 능동형 추적 알고리즘 개발)

  • Kim, Soon-Young;Ko, Jae-Sun;Choi, Jung-Sik;Kang, Sung-Jun;Baek, Jeong-Woo;Jang, Mi-Geum;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.375-378
    • /
    • 2009
  • This paper proposes active tracking algorithm to improve efficiency of PV system. Active tracking algorithm tracks sun position using sensor method and program method with insolation condition. Also, in this case that insolation is very low, tracking system is controlled by environment mode to reduce the power loss. Proposed algorithm is applied the PV system and analyzes the generation value. And this algorithm proves the validity of this pater through the experimental result.

  • PDF

Tip Position Control of a Flexible-Link Manipulator with Neural Networks

  • Tang Yuan-Gang;Sun Fu-Chun;Sun Zeng-Qi;Hu Ting-Liang
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.308-317
    • /
    • 2006
  • To control the tip position of a flexible-link manipulator, a neural network (NN) controller is proposed in this paper. The dynamics error used to construct NN controller is derived based on output redefinition approach. Without the filtered tracking error, the proposed NN controller can still guarantee the closed-loop system uniformly asymptotically stable as well as NN weights bounded. Furthermore, the tracking error of desired trajectory can converge to zero with the proposed controller. For comparison an NN controller with filtered tracking error is also designed for the flexible-link manipulator. Finally, simulation studies are carried out to verify the theoretic results.

The study on a high efficiency PV tracking system (고효율 태양광 위치 추적 장치에 관한 연구)

  • Lee, Sang-Hun;Lee, Dong-Hee;Park, Sung-Jun;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.86-88
    • /
    • 2007
  • In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through the new coordinates transformation calculating the height and azimuth of the sun.

  • PDF

Solar Power Emotional LED Lightening Street Lamps with Multiple Control Sun Tracker (다중 추적식 태양광 발전 감성형 LED 가로등)

  • Lee, Jae-Min;Kim, Yong;Bae, Cheol-Soo;Kwon, Dae-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.920-926
    • /
    • 2011
  • In this paper, a solar power emotional LED lightening street lamps with multi control sun tracker is presented. The proposed system has a multiple control sun tracking function and high quality emotional LED lamps. The system is designed to absorb maximum sun lights by temperature sensor and humidity sensor of control circuits. A battery charge-discharge controller is developed for high efficient usage of battery charger for utilization of new and renewal energy. An interface circuit for remote monitoring and controlling is included in the developed system. The proposed multi tracking solar power emotional LED street lamps is better than conventional systems in aspect of tracking operation and energy efficiency, and expected to be a leading model for next generation solar power street lamp system, because it is a new technology combining sun tracking solar power system and emotional lightening system.

Tracking System Development for Optimal Efficiency of PV System (PV 시스템의 효율 최적화를 위한 추적 시스템 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Byung-Jin;Jung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.188-190
    • /
    • 2008
  • In this paper, it proposes a the high efficiency tracking system regarding power loss when operating a tracking system for environment variable such as a rapidly changing insolation to improve the power of PV tracking system. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this paper proposes a nonel control algorithm of the tracking system. The paper is analyzed efficiency about conventional PV tracking method, comparing proposed algorithm with high performance method. We show propriety of proposed algorithm by means of the demonstrable study.

  • PDF

ANGLES ONLY ORBIT DETERMINATION FROM SINGLE TRACKING STATION

  • Lee Byoung-Sun;Hwang Yoola
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.304-307
    • /
    • 2004
  • Satellite orbit determination using angles only data from single ground station is carried out. The KOMPSAT-1 satellite mono-pulse angle tracking data from 9-meter S-band antenna at KARI site in Daejeon are used for the orbit determination. Various angle tracking arcs from one-day to five-day are processed and the orbit determination results are analyzed. Antenna pointing data are predicted based on the orbit determination results to check the possibility of re-acquisition and tracking of the satellite signal. Normal satellite mission operations including orbit determination, antenna prediction, satellite re-acquisition and automatic tracking from predicted antenna angle pointing data are concluded to be possible when three-day angle tracking data from single tracking station are used for the orbit determination.

  • PDF

Multi-Cattle Tracking Algorithm with Enhanced Trajectory Estimation in Precision Livestock Farms

  • Shujie Han;Alvaro Fuentes;Sook Yoon;Jongbin Park;Dong Sun Park
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.23-31
    • /
    • 2024
  • In precision cattle farm, reliably tracking the identity of each cattle is necessary. Effective tracking of cattle within farm environments presents a unique challenge, particularly with the need to minimize the occurrence of excessive tracking trajectories. To address this, we introduce a trajectory playback decision tree algorithm that reevaluates and cleans tracking results based on spatio-temporal relationships among trajectories. This approach considers trajectory as metadata, resulting in more realistic and accurate tracking outcomes. This algorithm showcases its robustness and capability through extensive comparisons with popular tracking models, consistently demonstrating the promotion of performance across various evaluation metrics that is HOTA, AssA, and IDF1 achieve 68.81%, 79.31%, and 84.81%.

Closed-Form Solution of ECA Target-Tracking Filter using Position and Velocity Measurements

  • Yoon, Yong-Ki;Hong, Sun-Mog
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.23-27
    • /
    • 1997
  • Presented are closed-form expressions of the three-state exponentially correlated acceleration (ECA) target-tracking filter. The steady-state solution is derived based on Vaughan's approach for the case that he measurements of target position and velocity are available at discrete point in time. The solution for ECA tracking filter using only position measurements and the solution for the constant acceleration (CA) tracking filter are obtained as a special case of the presented results.

  • PDF

A study on the design and the application of an optical sun-position sensor (광학적 태양위치센서의 개발과 그 응용에 관한 연구)

  • 신현덕;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.393-396
    • /
    • 1986
  • A Sun-Position Sensor using four phototransistors and shadow band device has been designed, and a Sun-Tracking System which tracks varying positions of the sun in elevation and azimuth axes has been built and its performance has been analyzed on the basis of indoor experiments and computer simulations. Two permanent-magnetic Step Motors (1.8.deg./step) for the main actuators and a CRC-800A kit with the Z-80CPU for the main controller have been selected to construct the Sun-Tracking System. It has been shown that the Sun-Position Sensor has about 0.5.deg. resolution and 25msec is required for the response of a single step input to reach its steady state.

  • PDF

Design of movable Tracking System using CDS Type Sensor (CDS센서를 이용한 이동 가능형 태양추적시스템 설계)

  • Sim, Myung-Gyu;Ji, Un-Ho;Chun, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.6-11
    • /
    • 2010
  • Amount of power generated from solar photovoltaic can vary according to solar flux of sunlight due to nature of solar cell panel, and an angle that the sun and the surface of cell makes brings difference in amount of power generation. Solar flux is decided by location of surface of the Earth that is classified into longitude and latitude, but on the other hand, an angle that the sung and the surface of cell makes can be changed by changing the angle of a solar power generation device at the fixed location. A method of changing the angle of a solar power generation device as a measure for improving practical power generation efficiency. and studies about a solar tracking device for this are in active. This study conducted a research on a solar tracking system for improvement of solar power generation efficiency. A solar tracking system of this study is composed of a sensor part to confirm a location of the sun with a semiconductor photosensor using the photo conductive effect, and it analyzed output signal of a sensor by using microprocessor and it produced a control signal of driving part for tracking the sun. A solar power generator (25W) was produced to analyze performance of a solar tracking system and usefulness of a solar tracking device that was designed and produced in this study was confirmed through experiments.