• Title/Summary/Keyword: Sun Light

Search Result 1,949, Processing Time 0.026 seconds

Scale Model Experiments on Daylighting Performance of Topside Lighting Systems - Focused on Sun Scoop, Light Scoop and Sun Catcher Systems - (특수형 정측창 시스템의 자연채광성능에 관한 축소모형 실험 - 선 스쿠프, 라이트 스쿠프 및 선 캐처 시스템을 중심으로 -)

  • Kong, Hyo Joo;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.45-52
    • /
    • 2008
  • Daylighting systems can improve the luminous quality of indoor environment and reduce the building's electric lighting energy consumption. For designing good daylighting, place the light where it is desired and avoid excessive contrasts, glare and high light levels. Sun scoop, light scoop and sun catcher systems have been used for alternative systems compared to other natural lighting systems. This study aims to evaluate daylighting performance of sun scoop, light scoop and sun catcher systems using scale model experiments. For the purpose, the 1/10 scale models of the systems were made as the same areas of glazing(10 percent of floor area) on the top of the center roof. Totally 15 measuring points of illuminance on the horizontal work plane were monitored from 09:30 to 12:30 on October 29, 2007. Agilent data logger and photometric sensors Li-cor were used. As the results, the topside lighting systems can improve the illumination uniformity than side lighting and top lighting. However, the appropriated shading system should be integrated to prevent the direct sunlight.

WHITE LIGHT FLARE AT THE SOLAR LIMB

  • HIEI E.;YOU JIANQI;LI HUI
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.45-47
    • /
    • 2003
  • A white light flare was observed at the limb on 16 August 1989 in He 10830 ${\AA}$ spectra, H$\alpha$ slit jaw photo-grams, and white light filter-grams of ${\lambda}=5600{\AA}{\pm}800{\AA}$. The kernels of the white light flare are not spatially related with Ha brightenings, suggesting that the flare energy would be released at the photosphere.

The Growth Effects on Interior Landscape Plants by Optical Fiber Lighting System (광섬유 조명체계가 실내조경식물의 생육에 미치는 효과)

  • 최경옥;방광자
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.92-100
    • /
    • 2002
  • This study was carried out to obtain fundamental information on the growth response of interior landscape plants under fluorescent light, sunlight and optical fiber lighting indoors. Saintpaulia ‘Delaware’, ‘Kalanchoe blossfeldiana, Anthurium scherzerianum and Ardisia crenata were examined using light intensity of 5001ux and 1,0001ux of fluorescent light, sunlight and optical fiber lighting in an interior environment. Results of experiments are as follows; 1) Plant growth status showed the best results under optical fiber lighting compared with fluorescent light or sunlight. 2) Plant growth status was better under 1,0001ux light intensity than 5001ux light intensity and in cases of the same light intensity, the highest growth increase was under optical fiber lighting. while it was showed relatively different according to the different plant species between a fluorescent light and sunlight. 3) The deep pinkish red color of Saintpaulia ‘Delaware’flower was obtained first under an optical fiber lighting and a fluorescent light, a sun light in that order. 4) Regarding interred activity, photosynthetic rate and transpiration rate, intercellular CO, water absorption rate showed a similar tendency generally in spite of a little difference. Namely, transpiration rate and intercellular CO, $CO_2$ a absorption rate increased according to increase of photosynthetic rate. 5) Photosynthetic rate of test plants except Anthurium scherzerianum increased according to increase of light intensity and increased highest under optical fiber lighting in the same light intensity condition. Increases differed under fluorescent light and sun light. That of Saineaulia ‘Delaware’and Anthurium scherzerianum increased in the order of optical fiber, fluorescent light and sun light, but that of Kalanchoe blossfeldiana and Ardisia pusilla increased in the order of optical fiber lighting, sun light and fluorescent light. Summing up these results, In visual value or internal health status of all experimental plants we obtained the highest result under an optical fiber lighting. Finally, we need to introduce an optical fiber lighting in interior landscape space as main light source.

Development of Multi-flat Reflector Sun Tracking System for Sun Photocell Maximum Power Generation (태양전지 최대전력 발생을 위한 다 평면 반사경 태양추적시스템 개발)

  • Lee, Kang-Sin;Lee, Hyun-Seog;Yoo, Seok-Ju;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.67-72
    • /
    • 2011
  • Recently, photovoltaic generator system is widely extended by energy policy of the government. Add to this, for high efficiency of power generation per natural light unit area is needed to sun tracking system. And it is needed to condensed light generator for reducer of equipment expense. As method of solving this problem, this paper is developed multi-flat reflector sun tracking system for sun photocell maximum power generation. The system is consisted of multi-flat reflector and two axes machinery and sun location perceiver and AVR controller. GaAs 3J cell generated 6.75 times power more than silicon cell by times condensing light system. As a result, condensing light system of multi-flat reflector generated maximum power and showed reducing costs to photovoltaic generator.

An Accurate Sun Tracking System (태양광 집적을 위한 태양위치 추적장치)

  • 백현규;곽만섭;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.737-741
    • /
    • 2001
  • An illumination system by using sun light is optimally designed. The developing system consists of main controler for sun tracking, Cds sensor module, and light translation system based on optical fiber. A sun tracking algorithm is designed in such away that the illumination system stand with straight angle to the direction of sun within $\pm$2$^{\circ}$as permissible tolerance. To show the validity of the developed system, several experiments will be illustrated.

  • PDF

Power Supply for USN by Using SMD Type Solar Cell Array (SMD 타입 태양전지 어레이를 이용한 USN용 전원 공급 장치)

  • Kim, Seong-Il
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.22-25
    • /
    • 2009
  • For increasing the output voltage, six SMD(surface mount device) type AlGaAs/GaAs solar cells were connected in series. The electrical properties of the array were measured and compared with one sun (100 mW/$cm^2$) and indoor light (480 lux) conditions. Under one sun condition, output power was 21.57 mW and it was $14.67\;{\mu}W$ under indoor light condition. Under the indoor light condition, the intensity of the light is very low compared to one sun condition. Thus the Voc(open circuit voltage) and Isc (short circuit current) of the sample under indoor light condition decreased very much compared to that of under the one sun condition. This kind of solar cell power supply can be used as a power source for ubiquitous sensor network (USN).

  • PDF

One Idea on a Three Dimensional Measuring System Using Light Intensity Modulation

  • Fujimoto Ikumatsu;Cho In-Ho;Pak Jeong-Hyeon;Pyoun Young-Sik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.130-136
    • /
    • 2005
  • A new optical digitizing system for determining the position of a cursor in three dimensions(3D) and an experimental device for its measurement are presented. A semi-passive system using light intensity modulation, a technology that is well known in radar ranging, is employed in order to overcome precision limitations imposed by background light. This system consists of a charge-coupled device camera placed before a rotating mirror and a light-emitting diode whose intensity is modulated. Using a Fresnel pattern for light modulation, it is verified that a substantial improvement of the signal to noise ratio is realized for the background noise and that a resolution of less than a single pixel can be achieved. This opens the doorway to the realization of high precision 3D digitized measurement. We further propose that a 3D position measurement with a monocular optical system can be realized by a numerical experiment if a linear-period modulated waveform is adopted as the light-modulating one.

Solar Tracking Performance using a Heliostat and Uniform Irradiation of LED Light for a Plant Factory (식물공장의 헬리오스탯을 이용한 태양광 추적성능 및 LED 균일광 조사)

  • Koo, Kyung-Wan;Kim, Tae-Jin;Kim, Youngshik;Ryu, Bong-Jo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1761-1767
    • /
    • 2015
  • This paper deals with the solar tracking performance using a small heliostat, the light reduction rate of the sun light, and the performance of uniform irradiation of LED light for a plant factory. A high precision encoder is attached to the heliostat to improve tracking accuracy. As a result, our heliostat-based solar tracking systems track efficiently the movement of the sun light in experimental tests. The reduction rate of the sun light in the plant factory is then measured by using an illumination sensor. The average reduction rate is 4.29%, which represents lower light reduction rates. In uniform irradiation tests of LED light, sixteen points are measured, and overall deviations of irradiation were within eight percents.

DEVELOPMENT OF ULTRA-LIGHT 2-AXES SUN SENSOR FOR SMALL SATELLITE

  • Kim, Su-Jeoung;Kim, Sun-Ok;Moon, Byoung-Young;Chang, Young-Keun;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2005
  • This paper addresses development of the ultra-light analog sun sensors for small satellite applications. The sun sensor is suitable for attitude determination for small satellite because of its small, light, low-cost, and low power consumption characteristics. The sun sensor is designed, manufactured and characteristic-tested with the target requirements of ${\pm}60^{\circ}$ FOV (Field of View) and pointing accuracy of ${\pm}2^{\circ}$. Since the sun sensor has nonlinear characteristics between output measurement voltage and incident angle of sunlight, a higher order calibration equation is required for error correction. The error was calculated by using a polynomial calibration equation that was computed by the least square method obtained from the measured voltages vs. angles characteristics. Finally, the accuracies of 1-axis and 2-axes sun sensors, which consist of 2 detectors, are compared.

Effect of Different Light Intensities on the Growth and Leaf Gas Exchanges in Miscanthus sinensis and Pennisetum purpurascens (참억새 및 수크령의 광도차에 따른 생육변화 및 가스교환에 미치는 영향)

  • Kwack, Hye Ran;Lee, Jong Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.110-115
    • /
    • 2004
  • This experiment was conducted to investigate the effect of light intensities on the growth responses, carbohydrate contents and the characteristics of leaf gas exchange in Miscanthus sinensis and Pennisetum purpurascens. The plant height and leaf length were increased to about 30% in the sun. However, those were reduced severely in the shade, and leaf necrosis was also observed. The representative growth index and the dry weight of 2 species were 50% higher than shade and the rate was reduced according to the decrease of light intensities. Total carbohydrate contents showed very similar changes to that of dry weight. However, any notable influences were observed at above the light intensities of 250~500${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in the half shade. The size of spikes and the earliest spiking appeared in the sun and the spike color was decolorized as decreased in light intensities, irrespective of species. Photosynthetic rate of 2 species was 2 times higher in the sun than those in the shade, and it showed the typical photoresponses of sun plant. Stomatal conductances and intercelluar $CO_2$ concetration showed similar changes to that of photosynthetic rate. On the contrary, vapor pressure deficit was increased more in the shade than in the sun.