• Title/Summary/Keyword: Sun : magnetic fields

Search Result 101, Processing Time 0.025 seconds

Properties of transient horizontal magnetic fields and their implication to the origin of quiet-Sun magnetism

  • Ishikawa, Ryohko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.84.1-84.1
    • /
    • 2012
  • Recent spectropolarimetric observations with high spatial resolution and high polarization sensitivity have provided us with new insight to better understand the quiet-Sun magnetism. This talk is concerned with the ubiquitous transient horizontal magnetic fields in the quiet-Sun, as revealed by the Solar Optical Telescope (SOT) on board Hinode satellite. Exploiting the SOT data with careful treatment of photon noise, we reveal the enigmatic properties of these horizontal magnetic fields such as lifetime, size, position in terms of granular structure, occurrence rate, three-dimensional structure, total magnetic flux, field strength distribution, relationship with the meso- and super-granulations and so on. Based on these observational consequences, we conjecture that the local dynamo process, which takes place in a relatively shallow layer with the granular size, produces these transient horizontal magnetic fields and that these horizontal magnetic fields contribute to the considerable amount of quiet-Sun magnetic fields. We also estimate the magnetic energy flux carried by these horizontal magnetic fields based on the statistical data, and find that the total magnetic energy is comparable to the total chromospheric and coronal energy loss, implying their important role for the chromospheric heating and dynamism.

  • PDF

OBTAINING BOUNDARY TANGENTIAL COMPONENTS OF POTENTIAL MAGNETIC FIELDS BY A VARIATIONAL METHOD

  • CHOE G. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.89-93
    • /
    • 1998
  • An attempt is made to find the boundary tangential components of potential magnetic fields without constructing solutions in the entire domain. In our procedure, the magnetic energy is expressed as a functional of tangential and normal magnetic fields at the boundary and is minimized by the variational principle. This paper reports a preliminary study on two dimensional potential fields above a plane.

  • PDF

Solar Interior Currents Presumed by Solar Surface Magnetic Fields

  • Bogyeong Kim;Yu Yi
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.187-194
    • /
    • 2023
  • The remote sensing technique of measuring the magnetic field was applied first to sunspots by Hale (1908). Later Babcock (1961) showed that the solar surface magnetic field on a global scale is a dipole in first-order approximation and that this dipole field reverses once every solar cycle. The Wilcox Solar Observatory (WSO) supplies the spherical harmonics coefficients of the solar corona magnetic field of each Carrington Rotation, calculated based on the remotely-sensed photospheric magnetic field of the solar surface. To infer the internal current system producing the global solar coronal magnetic field structure and evolution of the Sun, we calculate the multipole components of the solar magnetic field using the WSO data from 1976 to 2019. The prominent cycle components over the last 4 solar activity cycles are axis-symmetric fields of the dipole and octupole. This implies that the current inversion driving the solar magnetic field reversal originates from the equatorial region and spreads to the whole globe. Thus, a more accurate solar dynamo model must include an explanation of the origin and evolution of such solar internal current dynamics.

Measurement of Two Dimensional Magnetic Properties of Electrical Steel Sheets under Rotating Magnetic Fields (전기강판의 회전자계 하에서의 2차원 자계특성 측정)

  • Eum, Young-Hwan;Hong, Sun-Ki;Shin, Pan-Seok;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.617-622
    • /
    • 2006
  • It is necessary to measure precisely the magnetic characteristics of electrical steel sheets under rotating magnetic fields, to obtain an accurate numerical performance analysis of electric machines made of electrical steel sheets. In this paper, the two dimensional magnetic characteristics of an electrical steel sheet are measured and explained under rotating magnetic fields using a two-axes-excitation type single sheet tester (SST). Through experiments, the magnetic properties, under rotating magnetic fields, of a non-oriented and grain oriented electrical steel sheet were measured respectively. In addition, the iron losses due to not only the alternating magnetic fields, but also rotating magnetic fields were measured. These experimentally measured results can evidently be applied to the analysis of iron losses in electrical machines.

MAGNETIC HELICITY PUMPING BY TWISTED FLUX TUBE EXPANSION

  • CHAE JONGCHUL;MOON Y.-J.;RUST D. M.;WANG HAIMIN;GOODE PHILIP R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Recent observations have shown that coronal magnetic fields in the northern (southern) hemisphere tend to have negative (positive) magnetic helicity. There has been controversy as to whether this hemispheric pattern is of surface or sub-surface origin. A number of studies have focused on clarifying the effect of the surface differential rotation on the change of magnetic helicity in the corona. Meanwhile, recent observational studies reported the existence of transient shear flows in active regions that can feed magnetic helicity to the corona at a much higher rate than the differential rotation does. Here we propose that such transient shear flows may be driven by the torque produced by either the axial or radial expansion of the coronal segment of a twisted flux tube that is rooted deeply below the surface. We have derived a simple relation between the coronal expansion parameter and the amount of helicity transferred via shear flows. To demonstrate our proposition, we have inspected Yohkoh soft X-ray images of NOAA 8668 in which strong shear flows were observed. As a result, we found that the expansion of magnetic fields really took place in the corona while transient shear flows were observed in the photosphere, and the amount of magnetic helicity change due to the transient shear flows is quantitatively consistent with the observed expansion of coronal magnetic fields. The transient shear flows hence may be understood as an observable manifestation of the pumping of magnetic helicity out of the interior portions of the field lines driven by the expansion of coronal parts as was originally proposed by Parker (1974).

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF

MAGNETIC RECONNECTION IN SHEARED SOLAR MAGNETIC ARCADES

  • CHOE G. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.303-305
    • /
    • 1996
  • The evolution of solar magnetic arcades is investigated with the use of MHD simulations imposing resistivity on sheared magnetic fields. It is found that there is a critical amount of shear, over which magnetic reconnection can take place ill an arcade-like field geometry to create a magnetic island. The process leading to reconnect ion cannot. be solely attributed to a tearing instability, but rather to a reactive evolution of the magnetic arcade under resistivity. The natures of the arcade reconnection are governed by the spatial pattern of resistivity. A fast reconnection with a small shock angle can only be achieved when the diffusion region is localized. In this case. a highly collimated reconnect ion outflow can tear the plasmoid into a pair, and most of principal features in solar eruptive processes are reproduced.

  • PDF

Distribution characteristics of a solar-surface magnetic field in the recent four solar cycles

  • Magara, Tetsuya;An, Junmo;Lee, Hwanhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • Solar cycles are inherent to the Sun, which experiences temporal changes in its magnetic activity via the surface distribution of the solar magnetic field. This raises a fundamental question of how to derive the distribution characteristics of a solar-surface magnetic field that are responsible for individual solar cycles. We present a new approach to deriving as long-term and large-scale distribution characteristics of this quantity as was ever obtained; that is, we conducted a population ecological analysis of Wilcox Solar Observatory (WSO) Synoptic Charts which provide a more than 40-year time series of latitude-longitude maps of solar-surface magnetic fields. In this approach, solar-surface magnetic fields are assumed as hypothetical trees with magnetic polarities (magnetic trees) distributed on the Sun. Accordingly, we identified a peculiarity of cycle 23 with a longer period than an average period of 11 years; specifically we found that the negative surface magnetic field had much more clumped distributions than the positive surface magnetic field during the first one-third of this cycle, while the latter was dominant over the former. The Sun eventually spent more than one-third of cycle 23 recovering from these imbalances.

  • PDF

Monte Carlo Calculation of the Dose Profiles for a 6 MeV Electron Beam with Longitudinal Magnetic Fields

  • Jeong, Dong-Hyeok;Oh, Young-Kee;Kim, Jhin-Kee;Kim, Jeung-Kee;Shin, Kyo-Chul;Kim, Ki-Hwan;Lee, Jeong-Ok;Kang, Jeong-Ku;Moon, Sun-Rock
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.109-112
    • /
    • 2002
  • Using Monte Carlo calculations the effects of longitudinal magnetic fields on the beam profiles produced by clinical electron beam were studied. The Monte Carlo calculations were performed using the EGS4 code system modified to account for external magnetic fields. The beam profiles for a 6 MeV electron beam with longitudinal magnetic fields of 0.5-3.0 T were calculated. As a result of these calculations we found that the penumbra widths can be reduced with increased magnetic fields. This means that the electron therapy benefits from the external magnetic fields.

  • PDF

COMMENTS ON MAGNETIC RECONNECTION MODELS OF CANCELING MAGNETIC FEATURES ON THE SUN

  • Litvinenko, Yuri E.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.187-190
    • /
    • 2015
  • Data analysis and theoretical arguments support magnetic reconnection in a chromospheric current sheet as the mechanism of the observed photospheric magnetic flux cancellation on the Sun. Flux pile-up reconnection in a Sweet–Parker current sheet can explain the observed properties of canceling magnetic features, including the speeds of canceling magnetic fragments, the magnetic fluxes in the fragments, and the flux cancellation rates, inferred from the data. It is discussed how more realistic chromospheric reconnection models can be developed by relaxing the assumptions of a negligible current sheet curvature and a constant height of the reconnection site above the photosphere.