• Title/Summary/Keyword: Sun: sunspot models

Search Result 3, Processing Time 0.016 seconds

SUNSPOT MODELING AND SCALING LAWS

  • SKUMANICH A.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.1-5
    • /
    • 2003
  • In an early paper Skumanich suggested the existence of a scaling law relating the mean sunspot magnetic field with the square-root of the photospheric pressure. This was derived from an analysis of a variety of theoretical spot models including those by Yun (1968). These were based on the Schliiter-Temesvary (S- T) similarity assumption. To answer criticisms that such modeling may have unphysical (non-axial maxima) solutions, the S-T model was revisited, Moon et al. (1998), with an improved vector potential function. We consider here the consequences of this work for the scaling relation. We show that by dimensionalizing the lateral force balance equation for the S- T model one finds that a single parameter enters as a characteristic value of the solution. This parameter yields Skumanich's scaling directly. Using an observed universal flux-radius relation for dark solar magnetic features (spots and pores) for comparison, we find good to fair agreement with Yun's characteristic value, however the Moon et al. values deviate significantly.

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

Solar Activity as a Driver of Space Weather II. Extreme Activity: October-November 2003

  • Jo, Gyeong-Seok;Mun, Yong-Jae;Kim, Rok-Sun;Hwang, Yu-Ra;Kim, Hae-Dong;Jeong, Jong-Gyun;Im, Mu-Taek;Park, Yeong-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.38-38
    • /
    • 2004
  • In this talk, we present a good example of extreme solar and geomagnetic activities from October to November, 2003. These activities are characterized by very large sunspot groups, X-class solar flares, strong particle events, and huge geomagnetic storms. We discuss ground-based and space-based data in terms of space weather scales. We applied the CME propagation models to these events in order to predict the arrivals of heliospheric disturbances. (omitted)

  • PDF