• Title/Summary/Keyword: Sun: solar activity

Search Result 96, Processing Time 0.023 seconds

Prediction of Long-term Solar Activity based on Fractal Dimension Method

  • Kim, Rok-Soon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.45.3-46
    • /
    • 2016
  • Solar activity shows a self-similarity as it has many periods of activity cycle in the time series of long-term observation, such as 13.5, 51, 150, 300 days, and 11, 88 years and so on. Since fractal dimension is a quantitative parameter for this kind of an irregular time series, we applied this method to long-term observations including sunspot number, total solar irradiance, and 3.75 GHz solar radio flux to predict the start and maximum times as well as expected maximum sunspot number for the next solar cycle. As a result, we found that the radio flux data tend to have lower fractal dimensions than the sunspot number data, which means that the radio emission from the sun is more regular than the solar activity expressed by sunspot number. Based on the relation between radio flux of 3.75 GHz and sunspot number, we could calculate the expected maximum sunspot number of solar cycle 24 as 156, while the observed value is 146. For the maximum time, estimated mean values from 7 different observations are January 2013 and this is quite different to observed value of February 2014. We speculate this is from extraordinary extended properties of solar cycle 24. As the cycle length of solar cycle 24, 10.1 to 12.8 years are expected, and the mean value is 11.0. This implies that the next solar cycle will be started at December 2019.

  • PDF

SOLAR ACTIVITY AND SPACE ENVIRONMENT (태양활동과 우주환경)

  • YUN HONG SIK
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • The Earth is exposed to constant outflow of the solar wind from the outer layers of the Sun, and violent transient events taking place from active regions increase the energy flux of both radiation and particles leaving the Sun. Thus the space surrounding the Earth is a highly dynamic environment that responds sensitively to changes in radiation, particles and magnetic field arriving from the Sun. Nowadays, it becomes increasingly important to understand how the physical system of Earth-space works and how the space around the Earth connects to interplanetary space. In the present paper we describe how explosive solar events, such as CME(Coronal Mass Ejection) and flares affect the Earth-space environment and how the space weather reacts to them. Practical consequences are presented to demonstrate why a broader view of Earth's environment is greatly needed to cope with modern day's inhabitation problem in a rapidly developing space age.

  • PDF

Latitudinal Distribution of Sunspot and North-South Asymmetry Revisited

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.55-66
    • /
    • 2018
  • The solar magnetic field plays a central role in the field of solar research, both theoretically and practically. Sunspots are an important observational constraint since they are considered a discernable tracer of emerged magnetic flux tubes, providing the longest running records of solar magnetic activity. In this presentation, we first review the statistical properties of the latitudinal distribution of sunspots and discuss their implications. The phase difference between paired wings of the butterfly diagram has been revealed. Sunspots seem to emerge with the exponential distribution on top of slowly varying trends by periods of ~11 years, which is considered multiplicative rather than additive. We also present a concept for the center-of-latitude (COL) and its use. With this, one may sort out a traditional butterfly diagram and find new features. It is found that the centroid of the COL does not migrate monotonically toward the equator, appearing to form an 'active latitude'. Furthermore, distributions of the COL as a function of latitude depend on solar activity and the solar North-South asymmetry. We believe that these findings serve as crucial diagnostic tools for any potential model of the solar dynamo. Finally, we find that as the Sun modulates the amount of observed galactic cosmic ray influx, the solar North-South asymmetry seems to contribute to the relationship between the solar variability and terrestrial climate change.

The solar cyclic variation of photospheric intensity analyzed from solar images

  • Jeong, Dong-Gwon;Moon, Byeongha;Park, Hyungmin;Oh, Suyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2016
  • The Sun has diverse variations in solar atmosphere's layers due to solar activity. This solar variations can be recognized easily by sunspots which appear on the solar photosphere. Thus the sunspot on the photosphere is utilized by direct index of the solar activity. The other variation of the photosphere is center-to-limb variation (CLV). In this study, we analyze the relative intensity observed by SOHO, SDO. The data of photospheric intensity are from full disk images of SOHO/MDI intensity ($6768{\AA}$, from May 1994 to March 2011) and of SDO/HMI intensity ($6173-6174{\AA}$, from May 2010 to June 2016). As the result, we found the latitudinal variation of the intensity. The daily photospheric intensity showed the solar cyclic variation with sunspot number. It has a little difference of phase with sunspot number.

  • PDF

Distribution characteristics of a solar-surface magnetic field in the recent four solar cycles

  • Magara, Tetsuya;An, Junmo;Lee, Hwanhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.47.1-47.1
    • /
    • 2018
  • Solar cycles are inherent to the Sun, which experiences temporal changes in its magnetic activity via the surface distribution of the solar magnetic field. This raises a fundamental question of how to derive the distribution characteristics of a solar-surface magnetic field that are responsible for individual solar cycles. We present a new approach to deriving as long-term and large-scale distribution characteristics of this quantity as was ever obtained; that is, we conducted a population ecological analysis of Wilcox Solar Observatory (WSO) Synoptic Charts which provide a more than 40-year time series of latitude-longitude maps of solar-surface magnetic fields. In this approach, solar-surface magnetic fields are assumed as hypothetical trees with magnetic polarities (magnetic trees) distributed on the Sun. Accordingly, we identified a peculiarity of cycle 23 with a longer period than an average period of 11 years; specifically we found that the negative surface magnetic field had much more clumped distributions than the positive surface magnetic field during the first one-third of this cycle, while the latter was dominant over the former. The Sun eventually spent more than one-third of cycle 23 recovering from these imbalances.

  • PDF

THE CYCLIC VARIATION OF SOLAR PHOTOSPHERIC INTENSITY FROM SOHO IMAGES

  • Jeong, Dong-Gwon;Park, Hyungmin;Moon, Byeongha;Oh, Suyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.4
    • /
    • pp.105-109
    • /
    • 2017
  • The well-known solar cycle controls almost the entire appearance of the solar photosphere. We therefore presume that the continuous emission of visible light from the solar surface follows the solar cyclic variation. In this study, we examine the solar cyclic variation of photospheric brightness in the visible range using solar images taken by the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI). The photospheric brightness in the visible range is quantified via the relative intensity acquired from in the raw solar images. In contrast to total solar irradiance, the relative intensity is out of phase with the solar cycle. During the solar minimum of solar cycles 23-24, the relative intensity shows enhanced heliolatitudinal asymmetry due to a positive asymmetry of the sunspot number. This result can be explained by the strength of the solar magnetic field that controls the strength of convection, implying that the emission in the visible range is controlled by the strength of convection. This agrees with the photospheric brightness increasing during a period of long spotless days.

Active Days around Solar Minimum and Solar Cycle Parameter

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Utilizing a new version of the sunspot number and group sunspot number dataset available since 2015, we have statistically studied the relationship between solar activity parameters describing solar cycles and the slope of the linear relationship between the monthly sunspot numbers and the monthly number of active days in percentage (AD). As an effort of evaluating possibilities in use of the number of active days to predict solar activity, it is worthwhile to revisit and extend the analysis performed earlier. In calculating the Pearson's linear correlation coefficient r, the Spearman's rank-order correlation coefficient rs, and the Kendall's τ coefficient with the rejection probability, we have calculated the slope for a given solar cycle in three different ways, namely, by counting the spotless day that occurred during the ascending phase and the descending phase of the solar cycle separately, and during the period corresponding to solar minimum ± 2 years as well. We have found that the maximum solar sunspot number of a given solar cycle and the duration of the ascending phase are hardly correlated with the slope of a linear function of the monthly sunspot numbers and AD. On the other hand, the duration of a solar cycle is found to be marginally correlated with the slope with the rejection probabilities less than a couple of percent. We have also attempted to compare the relation of the monthly sunspot numbers with AD for the even and odd solar cycles. It is inconclusive, however, that the slopes of the linear relationship between the monthly group numbers and AD are subject to the even and odd solar cycles.

SUNSHINE, EARTHSHINE AND CLIMATE CHANGE: II. SOLAR ORIGINS OF VARIATIONS IN THE EARTH'S ALBEDO

  • GOODE P. R.;PALLE E.;YURCHYSHYN V.;QIU J.;HICKEY J.;RODRIGUEZ P. MONTANES;CHU M.-C.;KOLBE E.;BROWN C.T.;KOONIN S.E.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.83-91
    • /
    • 2003
  • There are terrestrial signatures of the solar activity cycle in ice core data (Ram & Stoltz 1999), but the variations in the sun's irradiance over the cycle seem too small to account for the signature (Lean 1997; Goode & Dziembowski 2003). Thus, one would expect that the signature must arise from an indirect effect(s) of solar activity. Such an indirect effect would be expected to manifest itself in the earth's reflectance. Further, the earth's climate depends directly on the albedo. Continuous observations of the earthshine have been carried out from Big Bear Solar Observatory since December 1998, with some more sporadic measurements made during the years 1994 and 1995. We have determined the annual albedos both from our observations and from simulations utilizing the Earth Radiation Budget Experiment (ERBE) scene model and various datasets for the cloud cover, as well as snow and ice cover. With these, we look for inter-annual and longer-term changes in the earth's total reflectance, or Bond albedo. We find that both our observations and simulations indicate that the albedo was significantly higher during 1994-1995 (activity minimum) than for the more recent period covering 1999-2001 (activity maximum). However, the sizes of the changes seem somewhat discrepant. Possible indirect solar influences on the earth's Bond albedo are discussed to emphasize that our earthshine data are already sufficiently precise to detect, if they occur, any meaningful changes in the earth's reflectance. Still greater precision will occur as we expand our single site observations to a global network.

TORSIONAL MHD OSCILLATIONS OF THE SUN

  • HIREMATH K. M.;GOKHALE M. H.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.313-314
    • /
    • 1996
  • Assuming that the solar activity and the solar cycle phenomena may be manifestations of global torsional MHD oscillations, we compute the Alfven wave travel times along the field lines in the five models of magnetic field described in the following text. For all these models, we compute standard deviation and it's ratio to mean Alfvenic wave travel times. The last two models yield the smallest relative bandwidth for the frequencies of the MHD oscillations. However, the last model is the only admissible one which can sustain global Alfvenic oscillations with well defined frequency for the fundamental mode

  • PDF

Orbit determination for the KOMPSAT-1 Spacecraft during the period of the solar maximum

  • Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.71-76
    • /
    • 2005
  • The KOMPSAT-1 satellite, launched into a circular sun synchronous orbit on Dec. 21, 1999, entered its$6^{th}$year of successful operation this year. The purposes of the mission are to collect earth images (6.6 m resolution), multi-spectral images of the ocean, and to collect information on the particle environment of the low earth orbit. For normal operation, KOMPSAT-1 orbits are determined using GPS navigation solutions. However, at the start of the life of KOMPSAT-1, the 11-year solar activity cycle was at a maximum. Solar flux was maintained at this level until 2002, and thereafter reduced to a moderate level by 2004. Thus, the OD (Orbit Determination) accuracy has varied according to the solar activity. This paper presents the degree to which the OD accuracy could be degraded during a high solar activity period compared with that of a (relatively) low solar activity period. We investigated the effect of the use of solve-for parameters such as a drag coefficient ($C_D$), solar radiation coefficient ($C_R$), and the general accelerations ($G_A$) on OD accuracy with solar activity. For the evaluation of orbit determination accuracy, orbit overlap comparison is used since no independent orbits of comparable accuracy are available for comparison. The effect of the use of a box-wing model instead of a constant cross-sectional area is also investigated.