Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.2.55

Latitudinal Distribution of Sunspot and North-South Asymmetry Revisited  

Chang, Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.2, 2018 , pp. 55-66 More about this Journal
Abstract
The solar magnetic field plays a central role in the field of solar research, both theoretically and practically. Sunspots are an important observational constraint since they are considered a discernable tracer of emerged magnetic flux tubes, providing the longest running records of solar magnetic activity. In this presentation, we first review the statistical properties of the latitudinal distribution of sunspots and discuss their implications. The phase difference between paired wings of the butterfly diagram has been revealed. Sunspots seem to emerge with the exponential distribution on top of slowly varying trends by periods of ~11 years, which is considered multiplicative rather than additive. We also present a concept for the center-of-latitude (COL) and its use. With this, one may sort out a traditional butterfly diagram and find new features. It is found that the centroid of the COL does not migrate monotonically toward the equator, appearing to form an 'active latitude'. Furthermore, distributions of the COL as a function of latitude depend on solar activity and the solar North-South asymmetry. We believe that these findings serve as crucial diagnostic tools for any potential model of the solar dynamo. Finally, we find that as the Sun modulates the amount of observed galactic cosmic ray influx, the solar North-South asymmetry seems to contribute to the relationship between the solar variability and terrestrial climate change.
Keywords
sun; sunspots; butterfly diagram; north-south asymmetry;
Citations & Related Records
Times Cited By KSCI : 17  (Citation Analysis)
연도 인용수 순위
1 Solanki SK, Wenzler T, Schmitt D, 2008, Moments of the latitudinal dependence of the sunspot cycle: a new diagnostic of dynamo models, Astron. Astrophys. 483, 623-632 (2008). https://doi.org/10.1051/0004-6361:20054282   DOI
2 Yoshimura H, Solar-cycle dynamo wave propagation, Astrophys. J. 201, 740-748 (1975).   DOI
3 Antonucci E, Hoeksema JT, Scherrer PH, Rotation of the photospheric magnetic fields: a north-south asymmetry, Astrophys. J. 360, 296-304 (1990). https://doi.org/10.1086/169120   DOI
4 Atac T, Ozguc A, North-south asymmetry in the solar flare index, Sol. Phys. 166, 201-208 (1996). https://doi.org/10.1007/BF00179363   DOI
5 Atac T, Ozguc A, Flare index during the rising phase of solar cycle 23, Sol. Phys. 198, 399-407 (2001). https://doi.org/10.1023/A:1005218315298   DOI
6 Babcock HW, The topology of the Sun's magnetic field and the 22-year cycle, Astrophys. J. 133, 572-587 (1961).   DOI
7 Bai T, Sturrock PA, The 154-day and related periodicities of solar activity as subharmonics of a fundamental period, Nature 350, 141-143 (1991). https://doi.org/10.1038/350141a0   DOI
8 Li KJ, Schmieder B, Li QS, Statistical analysis of the X-ray flares ($M\;{\geq}\;1$) during the maximum period of solar cycle 22, Astron. Astrophys. Suppl. Ser. 131, 99-104 (1998). https://doi.org/10.1051/aas:1998254   DOI
9 Lee EH, Lee DY, Park MY Climate events and cycles during the last glacial-interglacial transition, J. Astron. Space Sci. 34, 207-212 (2017). https://doi.org/10.5140/JASS.2017.34.3.207   DOI
10 Leighton RB, A magneto-kinematic model of the solar cycle, Astrophys. J. 156, 1-26 (1969). https://doi.org/10.1086/149943   DOI
11 Li KJ, Liang HF, Yun HS, Gu XM, Statistical behavior of sunspot groups on the solar disk, Sol. Phys. 205, 361-370 (2002). https://doi.org/10.1023/A:1014288424727   DOI
12 Brajsa R, WhOl H, Vrsnak B, Ruzdjak D, Sudar D, et al., Differential rotation of stable recurrent sunspot groups, Sol. Phys. 206, 229-241 (2002). https://doi.org/10.1023/A:1015064522255   DOI
13 Bai T, Sturrock PA, Evidence for a fundamental period of the Sun and its relation to the 154 day complex of periodicities, Astrophys. J. 409, 476-486 (1993). https://doi.org/10.1086/172680   DOI
14 Ballester JL, Oliver R, Carbonell M, The periodic behavior of the north-south asymmetry of sunspot areas revisited, Astron. Astrophys. 431, L5-L8 (2005). https://doi.org/10.1051/0004-6361:200400135   DOI
15 Berdyugina SV, Usoskin IG, Active longitudes in sunspot activity: century scale persistence, Astron. Astrophys. 405, 1121-1128 (2003). https://doi.org/10.1051/0004-6361:20030748   DOI
16 Carbonell M, Oliver R, Ballester JL, On the asymmetry of solar activity, Astron. Astrophys. 274, 497-504 (1993).
17 Carrington RC, On Dr. Soemmering's observations of the solar spots in the years 1826, 1827, 1828, and 1829, Mon. Not. R. Astron. Soc. 20, 71-77 (1860). https://doi.org/10.1093/mnras/20.3.71   DOI
18 Carslaw KS, Harrison RG, Kirkby J, Cosmic rays, clouds, and climate, Science 298, 1732-1737 (2002). https://doi.org/10.1126/science.1076964   DOI
19 Likens GE, Wright RF, Galloway JN, Butler TJ, Acid rain, Sci. Am. 241, 43-51 (1979).
20 Li KJ, Wang JX, Zhan LS, Yun HS, Liang HF, et al., On the latitudinal distribution of sunspot groups over a solar cycle, Sol. Phys. 215, 99-109 (2003). https://doi.org/10.1023/A:1024814505979   DOI
21 Logan JA, Nitrogen oxides in the troposphere: global and regional budgets, J. Geophys. Res. 88, 10785-10807 (1983). https://doi.org/10.1029/JC088iC15p10785   DOI
22 Maunder EW, Note on the distribution of sun-spots in heliographic latitude, 1874 to 1902, Mon. Not. R. Astron. Soc. 64, 747-761 (1904). https://doi.org/10.1093/mnras/64.8.747   DOI
23 Moon GH, Ha GY, Kang SH, Lee BH, Kim KB, et al., Acidity in precipitation and solar north-south asymmetry, J. Astron. Space Sci. 31, 325-333 (2014). https://doi.org/10.5140/JASS.2014.31.4.325   DOI
24 Mouradian Z, Soru-Escaut I, On the dynamics of the largescale magnetic fields of the sun and the sunspot cycle, Astron. Astrophys. 251, 649-654 (1991).
25 Chang HY, On mode correlation of solar acoustic oscillations, J. Astron. Space Sci. 26, 287-294 (2009a). https://doi.org/10.5140/JASS.2009.26.3.287   DOI
26 Chang HY, Variation in north-south asymmetry of sun spot area, J. Astron. Space Sci. 24, 91-98 (2007a). https://doi.org/10.5140/JASS.2007.24.2.091   DOI
27 Chang HY, A new method for north-south asymmetry of sun spot area, J. Astron. Space Sci. 24, 261-268 (2007b). https://doi.org/10.5140/JASS.2007.24.4.261   DOI
28 Chang HY, Stochastic properties in north-south asymmetry of sunspot area, New Astron. 13, 195-201 (2008). https://doi.org/10.1016/j.newast.2007.08.007   DOI
29 Newton HW, Milsom AS, Note on the observed differences in spottedness of the Sun's northern and southern hemispheres, Mon. Not. R. Astron. Soc. 115, 398-404 (1955). https://doi.org/10.1093/mnras/115.4.398   DOI
30 Nandy D, Choudhuri AR, Toward a mean field formulation of the Babcock-Leighton type solar dynamo: I. ${\alpha}$-coefficient versus Durney's double-ring approach, Astrophys. J. 551, 576-585 (2001). https://doi.org/10.1086/320057   DOI
31 Obridko VN, Shelting BD, Occurrence of the 1.3-year periodicity in the large-scale solar magnetic field for 8 solar cycles, Adv. Space Res. 40, 1006-1014 (2007). https://doi.org/10.1016/j.asr.2007.04.105   DOI
32 Chang HY, Latitudinal distribution of sunspots and duration of solar cycles, J. Korean Astron. Soc. 48, 325-331 (2015). https://doi.org/10.5303/JKAS.2015.48.6.325   DOI
33 Chang HY, Periodicity of north-south asymmetry of sunspot area revisited: Cepstrum analysis, New Astron. 14, 133-138 (2009b). https://doi.org/10.1016/j.newast.2008.07.001   DOI
34 Chang HY, Correlation of parameters characterizing the latitudinal distribution of sunspots, New Astron. 16, 456-460 (2011). https://doi.org/10.1016/j.newast.2011.04.003   DOI
35 Chang HY, Bimodal distribution of area-weighted latitude of sunspots and solar north-south asymmetry, New Astron. 17, 247-253 (2012). https://doi.org/10.1016/j.newast.2011.07.016   DOI
36 Chang HY, Han JH, Cepstrum analysis of terrestrial impact crater records, J. Astron. Space Sci. 25, 71-76 (2008). https://doi.org/10.5140/JASS.2008.25.2.071   DOI
37 Cho IH, Chang HY, Long term variability of the Sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395   DOI
38 Ozguc A, Ucer C, North-south asymmetries in the green corona brightness between 1947 and 1976, Sol. Phys. 114, 141-146 (1988).
39 Oliver R, Ballester JL, The north-south asymmetry of sunspot areas during solar cycle 22, Sol. Phys. 152, 481-485 (1994). https://doi.org/10.1007/BF00680451   DOI
40 Ossendrijver AJH, Hoyng P, Schmitt D, Stochastic excitation and memory of the solar dynamo, Astron. Astrophys. 313, 938-948 (1996).
41 Park JH, Chang HY, Drought over Seoul and its association with solar cycles, J. Astron. Space Sci. 30, 241-246 (2013). https://doi.org/10.5140/JASS.2013.30.4.241   DOI
42 Parker EN, Hydromagnetic dynamo models, Astrophys. J. 122, 293-314 (1955). https://doi.org/10.1086/146087   DOI
43 Parker EN, The generation of magnetic fields in astrophysical bodies. I. the dynamo equations, Astrophys. J. 162, 665-673 (1970). https://doi.org/10.1086/150697   DOI
44 Parungo F, Nagamoto C, Maddl R, A study of the mechanisms of acid rain formation, J. Atmos. Sci. 44, 3162-3174 (1987). https://doi.org/10.1175/1520-0469(1987)044<3162:ASOTMO>2.0.CO;2   DOI
45 Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar north-south asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012). https://doi.org/10.1007/s13143-012-0025-3   DOI
46 Cho IH, Chang HY, Latitudinal distribution of sunspots revisited, J. Astron. Space Sci. 28, 1-7 (2011). https://doi.org/10.5140/JASS.2011.28.1.001   DOI
47 Cho IH, Kwak YS, Cho KS, Choi, HS, Chang HY, On the relation between the Sun and climate change with the solar northsouth asymmetry, J. Astron. Space Sci. 26 , 25-30 (2009). https://doi.org/10.5140/JASS.2009.26.1.025   DOI
48 Cho IH, Kwak YS, Chang HY, Cho KS, Park YD, et al., Dependence of GCRs influx on the solar north-south asymmetry, J. Atmos. Sol.-Terr, Phys. 73, 1723-1726 (2011). https://doi.org/10.1016/j.jastp.2011.03.007   DOI
49 Pulkkinen PJ, Brooke J, Pelt J, Tuominen I, Long-term variation of sunspot latitudes, Astron. Astrophys. 341, L43-L46 (1999).
50 Patris N, Delmas R, Legrand M, de Angelis M, Ferron FA, First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods, J. Geophys. Res. 107, 4115-4125 (2002). https://doi.org/10.1029/2001JD000672   DOI
51 Rieger E, Share GH, Forrest DJ, Kanbach G, Reppin C, et al., A 154-day periodicity in the occurrence of hard solar flares?, Nature 312, 623-625 (1984). https://doi.org/10.1038/312623a0   DOI
52 Cotter ESN, Jones AE, Wolff EW, Bauguitte SJB, What controls photochemical NO and NO2 production from Antarctic snow? laboratory investigation assessing the wavelength and temperature dependence, J. Geophys. Res. 108, 4147-4156 (2003). https://doi.org/10.1029/2002JD002602   DOI
53 Cho IH, Hwang J, Park YD, Revisiting solar and heliospheric 1.3-year signals during 1970-2007, Sol. Phys. 289, 707-719 (2014). https://doi.org/10.1007/s11207-013-0365-x   DOI
54 Choi KC, Park MY, Kim JH, Auto-detection of halo CME parameters as the initial condition of solar wind propagation, J. Astron. Space Sci. 34, 315-330 (2017). https://doi.org/10.5140/JASS.2017.34.4.315   DOI
55 Choudhuri AR, Schussler M, Dikpati M, The solar dynamo with meridional circulation, Astron. Astrophys. 303, L29-L32 (1995).
56 Schwabe SH, Die Sonne, Astron. Nachr. 20, 283-288 (1843).
57 Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006   DOI
58 Roy JR, The north-south distribution of major solar flare events, sunspot magnetic classes and sunspot areas (1955-1974), Sol. Phys. 52, 53-61 (1977). https://doi.org/10.1007/BF00935789   DOI
59 Schlamminger L, Hemispherical asymmetries in sunspot areas and auroral frequencies, Sol. Phys. 135, 407-413 (1991). https://doi.org/10.1007/BF00147510   DOI
60 Storini M, Damiani A, Effects of the January 2005 GLE/SPE events on minor atmospheric components, Proceedings of the 30th International Cosmic Ray Conference, Merida, Yucatan, Mexico 3-11 July 2007.
61 Svensmark H, Cosmoclimatology: a new theory emerges, Astron. Geophys. 48, 1.18-1.24 (2007). https://doi.org/10.1111/j.1468-4004.2007.48118.x   DOI
62 Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships. J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1   DOI
63 Egorova LV, Vovk VYa, Troshichev OA, Influence of variations of the cosmic rays on atmospheric pressure and temperature in the southern geomagnetic pole region, J. Atmos. Sol.-Terr. Phys. 62, 955-966 (2000). https://doi.org/10.1016/S1364-6826(00)00080-8   DOI
64 Damiani A, Storini M, Rafanelli C, Diego P, The hydroxyl radical as an indicator of SEP fluxes in the high-latitude terrestrial atmosphere, Adv. Space Res. 46, 1225-1235 (2010). https://doi.org/10.1016/j.asr.2010.06.022   DOI
65 Duchlev PI, An estimation of the long-term variation of a north-south asymmetry of the long-lived solar filaments, Sol. Phys. 199, 211-215 (2001). https://doi.org/10.1023/A:1010313817889   DOI
66 Duchlev PI, Dermendjiev VN, Periodicities in the N-S asymmetry of long-lived solar filaments, Sol. Phys. 168, 205-210 (1996). https://doi.org/10.1007/BF00145836   DOI
67 Forgacs-Dajka E, Major B, Borkovits T, Long-term variation in distribution of sunspot groups, Astron. Astrophys. 424, 311-315 (2004). https://doi.org/10.1051/0004-6361:20040550   DOI
68 Temmer M, Veronig A, Hanslmeier A, Hemispheric sunspot numbers $R_n$ and $R_s$: catalogue and N-S asymmetry analysis, Astron. Astrophys. 390, 707-715 (2002). https://doi.org/10.1051/0004-6361:20020758   DOI
69 Swinson DB, Koyama H, Saito T, Long-term variations in north-south asymmetry of solar activity, Sol. Phys. 106, 35-42 (1986). https://doi.org/10.1007/BF00161351   DOI
70 Temmer M, Veronig A, Hanslmeier A, Otruba W, Messerotti M, Statistical analysis of solar $H{\alpha}$ flares, Astron. Astrophys. 375, 1049-1061 (2001). https://doi.org/10.1051/0004-6361:20010908   DOI
71 Ternullo M, Looking inside the butterfly diagram, Astron. Nachr. 328, 1023-1032 (2007b). https://doi.org/10.1002/asna.200710868   DOI
72 Frey MM, Stewart RW, McConnell JR, Bales RC, Atmospheric hydroperoxides in West Antarctica: links to stratospheric ozone and atmospheric oxidation capacity, J. Geophys. Res. 110, D23301-D23317 (2005). https://doi.org/10.1029/2005JD006110   DOI
73 Funke B, Baumgaertner A, Calisto M, Egorova T, Jackman CH, et al., Composition changes after the "Halloween" solar proton event: the high-energy particle precipitation in the atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys. 11, 9089-9139 (2011). https://doi.org/10.5194/acp-11-9089-2011   DOI
74 Garcia HA, Evidence for solar-cycle evolution of north-south flare asymmetry during cycles 20 and 21, Sol. Phys. 127, 185-197 (1990). https://doi.org/10.1007/BF00158522   DOI
75 Temmer M, Rybak J, Bendik P, Veronig A, Vogler F, et al., Hemispheric sunspot numbers $R_n$ and $R_s$ from 1945-2004: catalogue and N-S asymmetry analysis for solar cycles 18-23, Astron. Astrophys. 447, 735-743 (2006). https://doi.org/10.1051/0004-6361:20054060   DOI
76 Ternullo M, The butterfly diagram fine structure, Sol. Phys. 240, 153-164 (2007a). https://doi.org/10.1007/s11207-006-0261-8   DOI
77 Ternullo M, The butterfly diagram internal structure, Astrophys. Space Sci. 328, 301-305 (2010). https://doi.org/10.1007/s10509-010-0270-9   DOI
78 Traversi R, Usoskin IG, Solanki SK, Becagli S, Frezzotti M, et al., Nitrate in polar ice: a new tracer of solar variability, Sol. Phys. 280, 237-254 (2012). https://doi.org/10.1007/s11207-012-0060-3   DOI
79 Tritakis VP, Mavromichalaki H, Petropoulos B, Asymmetric variations of the coronal green line intensity, Sol. Phys. 115, 367-384 (1988). https://doi.org/10.1007/BF00148734   DOI
80 Verma VK, On the increase of solar activity in the southern hemisphere during solar cycle 21, Sol. Phys. 114, 185-188 (1988). https://doi.org/10.1007/BF00193078   DOI
81 Georgieva K, Kirov B, Tonev P, Guineva V, Atanasov D, Longterm variations in the correlation between NAO and solar activity: the importance of north-south solar activity asymmetry for atmospheric circulation, Adv. Space Res. 40, 1152-1166 (2007). https://doi.org/10.1016/j.asr.2007.02.091   DOI
82 Garcia RR, Solomon S, A new numerical model of the middle atmosphere. 2. ozone and related species, J. Geophys. Res. 99, 12937-12952 (1994). https://doi.org/10.1029/94JD00725   DOI
83 Georgieva K, Long-term changes in atmospheric circulation, Earth rotation rate and north-south solar asymmetry, Phys. Chem. Earth 27, 433-440 (2002). https://doi.org/10.1016/S1474-7065(02)00023-2   DOI
84 Georgieva K, Kirov B, Bianchi C, Long-term variations in the correlation between solar activity and climate, Mem. Soc. Astron. Ital. 76, 965-968 (2005).
85 Gigolashvili MS, Japaridze DR, Mdzinarishvili TG, Chargeishvili BB, N-S asymmetry in the solar differential rotation during 1957-1993, Sol. Phys. 227, 27-38 (2005). https://doi.org/10.1007/s11207-005-1214-3   DOI
86 Gleissberg W, The probable behaviour of sunspot cycle 21, Sol. Phys. 21, 240-245 (1971). https://doi.org/10.1007/BF00155794   DOI
87 Hale GE, On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315-343 (1908). https://doi.org/10.1086/141602   DOI
88 Vernova ES, Mursula K, Tyasto MI, Baranov DG, A new pattern for the north-south asymmetry of sunspots, Sol. Phys. 205, 371-382 (2002). https://doi.org/10.1023/A:1014264428300   DOI
89 Vizoso G, Ballester JL, Periodicities in the north-south asymmetry of solar activity, Sol. Phys. 119, 411-414 (1989). https://doi.org/10.1007/BF00146187   DOI
90 Vizoso G, Ballester JL, The north-south asymmetry of sunspots, Astron. Astrophys. 229, 540-546 (1990).
91 Hansen SF, Hansen RT, Differential rotation and reconnection as basic causes of some coronal reorientations, Sol. Phys. 44, 503-508 (1975). https://doi.org/10.1007/BF00153228   DOI
92 Hathaway DH, Nandy D, Wilson RM, Reichmann EJ, Evidence that a deep meridional flow sets the sunspot cycle period, Astrophys. J. 589, 665-670 (2003). https://doi.org/10.1086/374393   DOI
93 Yi W, The north-south asymmetry of sunspot distribution, J. R. Astron. Soc. Can. 86, 89-98 (1992).
94 Waldmeier M, The asymmetry of solar activity in the years 1959-1969, Sol. Phys. 20, 332-344 (1971). https://doi.org/10.1007/BF00159763   DOI
95 White OR, Trotter DE, Note on the distribution of sunspots between the north and south solar hemispheres and its variation with the solar cycle, Astrophys. J. Suppl. Ser. 33, 391 (1977). https://doi.org/10.1086/190432   DOI
96 Wisniewski J, Kinsman DJ, An overview of acid rain monitoring activities in north America, Bull. Amer. Meteor. Soc. 63, 598-618 (1982). https://doi.org/10.1175/1520-0477(1982)063<0598:AOOARM>2.0.CO;2   DOI
97 Zeller EJ, Parker BC, Nitrate ion in Antarctic firn as a marker for solar activity, Geophys. Res. Lett. 8, 895-898 (1981). https://doi.org/10.1029/GL008i008p00895   DOI
98 Zeller EJ, Dreschhoff GAM, Anomalous nitrate concentrations in polar ice cores - do they result from solar particle injections into the polar atmosphere?, Geophys. Res. Lett. 22, 2521-2524 (1995). https://doi.org/10.1029/95GL02560   DOI
99 Zharkov SI, Zharkova VV, Statistical analysis of the sunspot area and magnetic flux variations in 1996-2005 extracted from the solar feature catalogue, Adv. Space Res. 38, 868-875 (2006). https://doi.org/10.1016/j.asr.2006.03.035   DOI
100 Verma VK, On the north-south asymmetry of solar activity cycles, Astrophys. J. 403, 797-800 (1993). https://doi.org/10.1086/172250   DOI
101 Ichimoto K, Kubota J, Suzuki M, Tohmura I, Kurokawa H, Periodic behaviour of solar flare activity, Nature 316, 422-424 (1985). https://doi.org/10.1038/316422a0   DOI
102 Howard R, Studies of solar magnetic fields. III - the east-west orientation of field lines, Sol. Phys. 38, 275-287 (1974). https://doi.org/10.1007/BF00162418
103 Howe R, Christensen-Dalsgaard J, Hill F, Komm RW, Larsen RM, et al., Dynamic variations at the base of the solar convection zone, Science 287, 2456-2460 (2000). https://doi.org/10.1126/science.287.5462.2456   DOI
104 Hwang J, Kim H, Park J, Lee J, Limitations of electromagnetic ion cyclotron wave observations in low earth orbit, J. Astron. Space Sci. 35, 31-37 (2018). https://doi.org/10.5140/JASS.2017.35.1.31   DOI
105 Joshi B, Joshi A, The north-south asymmetry of soft X-ray flare index during solar cycles 21, 22 and 23, Sol. Phys. 219, 343-356 (2004). https://doi.org/10.1023/B:SOLA.0000022977.95023.a7   DOI
106 Joshi B, Pant P, Distribution of $H{\alpha}$ flares during solar cycle 23, Astron. Astrophys. 431, 359-363 (2005). https://doi.org/10.1051/0004-6361:20041986   DOI
107 Kim BY, Chang HY, Short periodicities in latitudinal variation of sunspots, J. Astron. Space Sci. 28, 103-108 (2011). https://doi.org/10.5140/JASS.2011.28.2.103   DOI
108 Zolotova NV, Ponyavin DI, Phase asynchrony of the northsouth sunspot activity, Astron. Astrophys. 449, L1-L4 (2006). https://doi.org/10.1051/0004-6361:200600013   DOI
109 Kim G, Kim YS, Lee YS, Mesospheric temperatures over Apache Point Observatory ($32^{\circ}N,\;105^{\circ}W$) derived from Sloan digital sky survey spectra, J. Astron. Space Sci. 34, 119-125 (2017a). https://doi.org/10.5140/JASS.2017.34.2.119   DOI
110 Kim JH, Chang HY, Spectral analysis of geomagnetic activity indices and solar wind parameters, J. Astron. Space Sci. 31, 159-167 (2014). https://doi.org/10.5140/JASS.2014.31.2.159   DOI
111 Knaack R, Stenflo JO, Berdyugina SV, Periodic oscillations in the north-south asymmetry of the solar magnetic field, Astron. Astrophys. 418, L17-L20 (2004). https://doi.org/10.1051/0004-6361:20040107   DOI
112 Kim JH, Kim KB, Chang HY, Solar influence on tropical cyclone in Western North Pacific ocean, J. Astron. Space Sci. 34, 257-270 (2017b). https://doi.org/10.5140/JASS.2017.34.4.257   DOI
113 Kim S, Yi Y, Hong IS, Sohn J, Solar insolation effect on the local distribution of lunar hydroxyl, J. Astron. Space Sci. 35, 47-54 (2018). https://doi.org/10.5140/JASS.2017.35.1.47   DOI
114 Kitchatinov LL, Do dynamo-waves propagate along isorotation surfaces?, Astron. Astrophys. 394, 1135-1139 (2002). https://doi.org/10.1051/0004-6361:20021156   DOI
115 Knaack R, Stenflo JO, Berdyugina SV, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21-23. periodicities, north-south asymmetries and r-mode signatures, Astron. Astrophys. 438, 1067-1082 (2005). https://doi.org/10.1051/0004-6361:20042091   DOI
116 Krause F, Radler KH, Mean-field magnetohydrodynamics and dynamo theory (Pergamon, Oxford, 1980).
117 Krivova NA, Solanki SK, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin, Astron. Astrophys. 394, 701-706 (2002). https://doi.org/10.1051/0004-6361:20021063   DOI