• Title/Summary/Keyword: Summer stress

Search Result 267, Processing Time 0.029 seconds

Study on Ventilation Efficiency of a Mechanically Ventilated Broiler House­(I)Summer Season (강제환기식 육계사내의 환기효율성 조사연구­(I)하절기)

  • 이인복;정문성;유병기;전종기;김경원;이승기
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2003
  • In this study, the distributions of internal climates such as air temperature, humidity, dust, ammonia gas, and air velocity were systematically measured at a mechanically ventilated broiler houses during summer season, with local weather data. The analysis was focused on the suitability, stability, and uniformity of internal climate, resulting in serious stress on chickens and decrease of productivity In the mechanically ventilated broiler house, the difference between measured and recommended air temperatures(suitability) was 10.4C in maximum during the summer time. The difference of air temperature in the house between day and night was $8.7^{\circ}C$ in maximum. And maximal hourly range of internal air temperature at 0.4m height from the floor was $3.7^{\circ}C$ suggesting it maintained thermal uniformity in the broiler house. The $NH_3$ and dust concentrations were pretty low because ventilation was fully performed. The air speed at chicken location was measured 2.2m/s and 1.7m/s, respectively without and with chicken existence.

  • PDF

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Effect of Shading Methods on Growth and Fruit Quality of Paprika in Summer Season (파프리카 여름재배시 차광방법이 생육과 과실특성에 미치는 영향)

  • Ha, Jun Bong;Lim, Chae Shin;Kang, Hyo Yong;Kang, Yang Su;Hwang, Seung Jae;Mun, Hyung Su;An, Chul Geon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.419-427
    • /
    • 2012
  • This study was carried out to investigate the effect of two shading methods, shading agent spray on the glasshouse and internal shading screen treatment, on the growth and fruit quality of paprika (Capsicum annuum L. 'Cupra' and 'Coletti') in summer season cultivation. In the shading agent treatment, a commercial shading agent diluted with water at a ratio of 1 : 4 was sprayed on the roof of a glasshouse. In the internal shading screen treatment, a 10~20% shaded screen was used during the day time when the sun radiation was greater than $700W{\cdot}m^{-2}$. Compared to the unshaded control, photosynthetic photon flux density (PPFD) decreased in the greenhouse in the shading agent (SA) and shading screen (SS) treatments by 20% and 30%, respectively. Lower air temperatures and higher relative humidities were observed in the SA than in both the control and the SS treatment. Time to reach the break point of humidity deficit $8g{\cdot}m^{-3}$ was 2 hours late in the SA than in both the control and the SS treatment. Compared to control, both the SA and the SS treatments showed lower instantaneous temperatures of leaf, fruit, and flower by $2^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively. There were no differences in number of branches, stem diameter, and leaf size among treatments although both shading treatments promoted plant height in both cultivars. Botrytis infection ratio declined with the SA treatment by 14.7% in 'Cupra' and 22.1% in 'Coletti' as compared to that in the control. Shading increased fruit size in both cultivars, whereas no differences were observed in the number of locules and thickness of fruit tissue among treatments. Shading treatment increased mean fruit weight by a range of 10 to 15 g per fruit, while it decreased soluble solids contents as compared to that in the control. Similar Hunter values were observed among treatments, while fruit firmness increased slightly in shading treatments. Compared to the control, shading treatments improved marketable fruits by 11.7~22.6% and increased the number of fruits per plant by 4~9.2 in both 'Cupra' and 'Coletti'. The results of this study indicate that shading agent application on the roof of glasshouse would be one of the most effective options to reduce heat stress imposed on the paprika crop in summer cultivation, resulting in improved crop growth and fruit yield.

Effect of Temperature and Water Content of Soil on Creeping Bentgrass(Agrostis palustris Huds) Growth (토양의 온도와 수분이 크리핑 벤트그래스(Agrostis palustris Huds) 생육에 미치는 영향)

  • Lim, Seung-Hyun;Jeong, Jun-Ki;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.229-240
    • /
    • 2009
  • The high temperature and water content in soil profile probably affect the physiological disorder especially on cool-season turfgrasses in warm and humid weather of Korean summer. The purpose of this research was to analyze the effect of soil temperature and water content on the growth and stress response of creeping bentgrass(Agrostis palustris Huds.) under a humid and warm temperature. USGA(United State of Golf Association) green profile in laboratory test, Daily temperature changes were tested under a dried sand, 70% water content of field capacity, and saturated condition at $34^{\circ}C$ of the USGA green in lab. In this test, the dried sand reached to $80^{\circ}C$, however, the surface temperature decrease of $10^{\circ}C$ on the saturated condition. In the thermal properties test in field, thermal conductivity, thermal diffusivity, and soil temperature were increased followed by irrigation practise. In the water-deficient condition, the highest soil temperature was reached temporally right after irrigation, however, the excessive soil water content higher than field water holding capacity showed the highest soil temperature after a while. This result indicated that a heat damage to root system was caused from the thermal conductivity of a high surface soil temperature. The excessive irrigation when a high turf surface temperature should occur a negative result on tufgrass growth, moreover, it would be fatal to root growth of creeping bentgrass, especially when associated with a poor draining system on USGA sand green. Overall, this study shows that high soil temperature with water-excessive condition negatively affects on cool-season grass during the summer season, suggesting that excessive irrigation, over 70% field capacity of soil condition, does not help to reduce soil temperature for summer season in Korea. In the study that cool-season grass were treated with different water content of soil, The soil had higher temperature and more water holding capacity when treatment rate of soil conditioner was increased. The best growth at the normal water condition and the worst state of growth at thee water-excessive condition were observed.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.

On the Breeding of “CSR18${\times}$CSR19”- A Robust Bivoltine Hybrid of Silkworm, Bombyx mori L. for the Tropics

  • Kumar, N.Suresh;Basavaraja, H.K.;Kumar, C.M.Kishor;Reddy, N.Mal;Datta, R.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.2
    • /
    • pp.153-162
    • /
    • 2002
  • Earlier breeding experiments undertaken at Central Sericultural Research and Training Institute, Mysore, India since a decade had resulted in the development of many productive and qualitatively superior bivoltine hybrids. However, the hot climatic conditions of tropics prevailing particularly in summer are not conducive to rear these high yielding bivoltine hybrids. This has necessitated breeding of compatible bivoltine hybrids for year-round rearing. Accordingly, the Japanese hybrid, B2Ol ${\times}$ BCS12 which was found to be tolerant to high temperature was used as breeding resource material. Following hybridization and selection rearing of silkworms was taken up in SERICATRON (Environmental chamber with precise and automatic control facilities for uniform maintenance of temperature and humidity) at high temperature of $36{\times}1^{\circ}C$ and 85${\times}$5% RH in fifth instar and the control batches at $25{\times}1^{\circ}C$ and 65{\times}$5% RH. Directional selection was resorted to the batches reared at 36$\pm$1$^{\circ}C$ till F$_{5}$ keeping pupation rate as important selection criteria. From $F_{2}% onwards the experiment was modified in such a way as to conduct normal rearing every alternate generation to regain the lost vitality due to continuous exposure to high temperature and high humidity stress. At $F_{2}$ , Oval and dumb-bell cocoons were separated out and designated as CSR18 and CSR19, respectively. By utilizing these lines at $F_{12}$, the hybrid CSR18$\times$CSR19 was prepared and studied for the thermotolerance by subjecting to stress condition at high temperature of 36$\pm$1$^{\circ}C$ and 85$\pm$5% RH in fifth instar and the control batches at $25{\times}1^{\circ}C$ and 65${\times}$5% RH. The better performance of CSR18${\times}$CSR19 (survival > 88%) at $36{\times}1^{\circ}C$ clearly indicates the general superiority of CSR18${\times}$CSR19 with regard to high temperature tolerance over the productive hybrids and CSR18$\times$CSR19 can perform well in varied agro-climatic conditions of the tropics with optimum qualitative and quantitative characteristics.s.

Current Status and Investigation of International Co-operative Research Program-PINC(Program for the Inspection of Nickel Alloy Components) (국제공동연구 PINC(Program for the Inspection of Nickel Alloy Components) 현황 및 고찰)

  • Kim, Kyung-Cho;Kang, Sung-Sik;Song, Kyung-Ho;Chung, Koo-Kap;Chung, Hae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, PINC project. The aim of this project is to fabricate and obtain representative NDE mock-ups with flaws to simulate tight PWSCC cracks, to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing tight cracks such as PWSCC, to document the range of locations and crack morphologies associated with PWSCC and observed responses and to incorporate findings from other ongoing PWSCC research programs, as appropriate. By participating in PINC project, Korean morphology technique about PWSCC and NDE technique have improved and become similar lever with other advanced country. Therefore, the evaluation technique of integrity for nickel alloy component has been improved by cooperation with university, research institute and industries.

Effects of Water Stress on Growth and Yield of Paeonia lactiflora Pallas (수분스트레스가 작약의 생육과 수량에 미치는 영향)

  • Kim, Se-Jong;Park, Jun-Hong;Oh, Dong-Shig;Song, Kwan-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.3
    • /
    • pp.199-204
    • /
    • 2001
  • The study was carried out to find effects on growth and yield by drought in Paeonia lactiflora Pallas. The water stress treatment was imposed artificially on April 1 to May 30(top part growth high stage), June 1 to July 30(root growth high stage), August 1 to September 29(late growth stage) and control(below 50kPa) in rain shelter. In drought periods of April 1 to May 30, stem length and number of stem were 67.5cm and 10.4 ea/plant. It showed poor growth compared with control, and root length and diameter also decreased to 27.2cm and 24.5mm, respectively. In root yield, drought treatment of June 1 to July 30 showed lower root yield as $1,809kg\;10a^{-1}$, $1,902kg\;10a^{-1}$ for drought period of August 1 to September 29, compared with $2,039kg\;10a^{-1}$ of control, resulting in 11% and 7% reduction, respectively. Optimum irrigation times (50kPa) was 17 days after continuos rain-off in Spring(April 1 to May 30), 9 days in summer(June 1 to July 30). It could be estimated that effective irrigation point was at least 13 days in after August(Aug. 1 to Sep. 29).

  • PDF

Growth performance of planted population of Pinus roxburghii in central Nepal

  • Tiwari, Achyut;Thapa, Nita;Aryal, Sugam;Rana, Prabina;Adhikari, Shankar
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.264-274
    • /
    • 2020
  • Background: Climate change has altered the various ecosystem processes including forest ecosystem in Himalayan region. Although the high mountain natural forests including treelines in the Himalayan region are mainly reported to be temperature sensitive, the temperature-related water stress in an important growth-limiting factor for middle elevation mountains. And there are very few evidences on growth performance of planted forest in changing climate in the Himalayan region. A dendrochronological study was carried out to verify and record the impact of warming temperature tree growth by using the tree cores of Pinus roxburghii from Batase village of Dhulikhel in Central Nepal with sub-tropical climatic zone. For this total, 29 tree cores from 25 trees of P. roxburghii were measured and analyzed. Result: A 44-year long tree ring width chronology was constructed from the cores. The result showed that the radial growth of P. roxburghii was positively correlated with pre-monsoon (April) rainfall, although the correlation was not significant and negatively correlated with summer rainfall. The strongest negative correlation was found between radial growth and rainfall of June followed by the rainfall of January. Also, the radial growth showed significant positive correlation with that previous year August mean temperature and maximum temperature, and significant negative correlation between radial growth and maximum temperature (Tmax) of May and of spring season (March-May), indicating moisture as the key factor for radial growth. Despite the overall positive trend in the basal area increment (BAI), we have found the abrupt decline between 1995 and 2005 AD. Conclusion: The results indicated that chir pine planted population was moisture sensitive, and the negative impact of higher temperature during early growth season (March-May) was clearly seen on the radial growth. We emphasize that the forest would experience further moisture stress if the trend of warming temperatures continues. The unusual decreasing BAI trend might be associated with forest management processes including resin collection and other disturbances. Our results showed that the planted pine forest stand is sub-healthy due to major human intervention at times. Further exploration of growth climate response from different climatic zones and management regimes is important to improve our understanding on the growth performance of mid-hill pine forests in Nepal.

The effect of seasonal thermal stress on milk production and milk compositions of Korean Holstein and Jersey cows

  • Lim, Dong-Hyun;Mayakrishnan, Vijayakumar;Ki, Kwang-Seok;Kim, Younghoon;Kim, Tae-Il
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.567-574
    • /
    • 2021
  • Objective: In this study we investigated the effect of seasonal thermal stress on milk production and milk compositions between Holstein and Jersey dairy cows under the temperate-climate in Korea. Methods: A total of 9 Holstein lactating dairy cows (2.0±0.11 parity) which had a daily milk yield of 29.77±0.45 kg, and days in milk of 111.2±10.29 were selected similarly at the beginning of the experiments in each season. Also, a total of 9 Jersey lactating dairy cows (1.7±0.12 parity) which had a daily milk yield of 20.01±0.43 kg, and days in milk of 114.0±9.74 were selected similarly at the beginning of the experiments. Results: Results showed that the average ambient temperature (℃) and temperature-humidity index (THI) were higher in summer, and were lower in winter (p<0.05). The average relative humidity (RH, %) was higher in autumn than that of other seasons (p<0.05). Milk production was significantly decreased (Holstein 29.02 kg/d and Jersey 19.75 kg/d) in autumn than in other seasons (Holstein 30.14 kg/d and Jersey 20.96 kg/d). However, the milk production was negatively correlated in Holstein cows, and positively correlated in Jersey cows with THI values increased from 16 to 80. In addition, milk yield was increased by 15% in Holstein cows and decreased by 11% in Jersey cows with the THI values increased from 16 to 20. The fat and protein content percentage was significantly higher in Jersey milk than in Holstein milk, furthermore the fat and protein content yield was higher in Jersey cow milk than that of Holstein cow's milk with all THIs. Conclusion: From the study results, we concluded that Jersey cows might be less adaptable to low temperature of the winter, and this would have a negative impact on dairy farmer income since Korea's milk price estimation system places a higher value on milk yield than on milk compositions or sanitary grades.