• Title/Summary/Keyword: Sulindac

Search Result 18, Processing Time 0.023 seconds

Use of Transgenic and Mutant Animal Models in the Study of Heterocyclic Amine-induced Mutagenesis and Carcinogenesis

  • Dashwood, Roderick H.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Heterocyclic amines (HCAs) are potent mutagens generated during the cooking of meat and fish, and several of these compounds produce tumors in conventional experimental animals. During the past 5 years or so, HCAs have been tested in a number of novel in vivo murine models, including the following: lacZ, lacI, cII, c-myc/lacZ, rpsL, and $gpt{\Delta}$ transgenics, $XPA^{-/-}$, $XPC^{-/-}$, $Msh2^{+/-}$, $Msh2^{-/-}$ and $p53^{+/-}$ knock-outs, Apc mutant mice ($Apc^{{\Delta}716}$, $Apc^{1638N}$, $Apc^{min}$), and $A33^{{\Delta}N{\beta}-cat}$ knock-in mice. Several of these models have provided insights into the mutation spectra induced in vivo by HCAs in target and non-target organs for tumorigenesis, as well as demonstrating enhanced susceptibility to HCA-induced tumors and preneoplastic lesions. This review describes several of the more recent reports in which novel animal models were used to examine HCA-induced mutagenesis and carcinogenesis in vivo, including a number of studies which assessed the inhibitory activities of chemopreventive agents such as 1,2-dithiole-3-thione, conjugated linoleic acids, tea, curcumin, chlorophyllin-chitosan, and sulindac.

Inhibition of Human Leukocyte Cathepsin G by NSAIDs (Non-Steroidal Anti-Inflammatory Drugs) (NSAIDs (Non-Steroidal Anti-Inflammatory Drugs)에 의한 사람 중성구 Cathepsin G의 활성도 억제)

  • Bae, Sung-Jun;Ghim, Sa-Youl;Kang, Koo-Il
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.51-54
    • /
    • 1990
  • Human leukocyte cathepsin-Gs are active participant in the active phase of inflammations like rheumatoid arthritis, emphysema and glomerular injury. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for treatment of these inflammatory diseases. Mechanism of action of NSAIDs for treatment of inflammatory diseases, especially like rheumatoid arthritis, are known as the inhibitors of prostaglandin synthesis. Inhibitions of the activities of human leukocyte cathepsin-Gs by non-steroidal anti-inflammatory drugs, however, were not same as the known pharmacological effects (inhibition of cyclooxygenase) of these drugs. Among them, especially, sulindac, salicylate, phenylbutazone, oxyphenbutazone, and salicyluric acid inhibited human leukocyte cathepsin-Gs effectively. $IC_{50}s$ of each drug were 4.3mM, 14.3mM, 6.5mM, 11mM and 15mM respectively. The drugs which have same chemical structure and same degree of inhibition effect on cyclooxygenase showed different degree or no effect on inhibition of cathepsin G. These inhibition effect might be, beside of inhibition of cyclooxygenase in the prostaglandin synthesis pathway, another benefitial antiinflammatory effect of NSAIDs by direct protection against tissue destruction in inflammatory diseases.

  • PDF

Human Neutrophil Cathepsin G: In Vivo Synthesis of Anti-HNCG Antibody, Inhibition of the Activity of HNCGs and Mechanism of the Inhibitions (사람 호중구 Cathepsin G: Anti-HNCG Ab의 In Vivo 합성, HNCG의 활성도 억제와 그 기전에 관한 연구)

  • Bae, Sung-Jun;Kim, Woo-Mi;Kim, Ki-Chan;Chang, Myung-Woong;Kang, Koo-Il
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.145-153
    • /
    • 1991
  • Human neutrophil cathepsin-G, which has been known as one of the active enzymes causing inflammatory diseases, was purified by two steps procedure involving one size exclusion (Ultorogel AcA54) and one ion exchange (CM-Sephadex) chromatography. Purified HNCGs were cross-reacted with Anti-HNCathepsin-G antibodies which were radised in rabbits and purified by cathepsin-G labeled Sepharose 4B affinity chromatography. HNCGs were effectively inhibited by NSAIDs including phenylbutazone, sulindac, oxyphenbutazone, salicylic acid and salicyluric acid. $IC_{50}_s$ of these drugs for inhibition of Cathepsin G were 0.3-0.8 mM. Other NSAIDs including aspirin showed little or no inhibition effect on the activity of Cathepsin G. These results strongly indicated that NSAIDs which showed inhibition effect on the activity of HNCGs possibly be at least a part of mechanism of action which might be related to direct inhibition of cathepsin G at the tissue destruction sites beside of their known mechanism of action as an anticyclo-oxygenase in treatment of inflammatory diseases. Lipid soluble component of Korean Red Ginseng which was known as an anti-inflammatory agent inhibited HNCGs strongly, but no other fractions did inhibited HNCGs. Antibiotics including novobiosin and rifamycin showed some inhibition effect on HNCGs, i. e.., $IC_{50}$ of these drugs were 2.6 mM and 1.5 mM respectively, and other antibiotics including penicillin G showed no or negligible inhibition effect on the activity of HNCGs. However. tetracyclines inhibited HNCGs very effectively at the concentration of therapeutic range. The inhibition effect of the activity of HNCGs by tetracycline are not related to the N-dimethyl radical on the 4 position of the tetracycline molecule. Furthermore, N-dedimethylated tetracyclines may have beneficial effect for long term treatment of chronic inflammatory diseases without developing any drug resistance to microorganisms.

  • PDF

Differential Sensitivities of Human Multidrug-resistant Cancer Cells to BIIB021 and Modulation of Hsp90 Inhibitors by NSAIDs and Niclosamide (항암제 다제내성(MDR) 암세포의 Hsp90 저해제 BIIB021에 대한 감수성의 차이 및 NSAIDs 및 Niclosamide에 의한 Hsp90 저해제의 활성 변화)

  • Moon, Hyun-Jung;Lee, Su-Hoon;Kim, Sun-Hee;Kang, Chi-Dug
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1212-1219
    • /
    • 2018
  • The critical role of heat shock protein 90 (Hsp90) in tumorigenesis led to the development of several first- and second-generation Hsp90 inhibitors, which have demonstrated promising responses in cancers. In this study, we found second-generation Hsp90 inhibitor BIIB021-resistant multidrug-resistant (MDR) human cancer cells, although BIIB021 was shown to be active in first-generation Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-resistant MDR cells. MCF7-MDR and HeyA8- MDR cells were more resistant to BIIB021 than their parental counterparts, indicating that BIIB021 cannot be applicable to all cancer cells expressing MDR proteins. We revealed that dimethyl-celecoxib (DMC), one of the non-steroidal anti-inflammatory drugs (NSAIDs), potentiated cytotoxicity of BIIB021 against both BIIB021-resistant and BIIB021-sensitive MDR cells. The effectiveness of NSAIDs involving celecoxib and DMC in combination with BIIB021 led to the autophagic degradation/down-regulation of mutant p53 (mutp53) that overexpressed MDR cells and the suppression of Hsp70 induction. This resulted in sensitization of MDR cells to BIIB021. Moreover, autophagy induction by sulindac sulfide, another type of NSAID, and niclosamide, an FDA-approved anthelmintic drug, potentiated 17-AAG-mediated autophagic degradation/down-regulation of mutp53 and c-Myc, client proteins of Hsp90. Therefore, our results suggest that NSAIDs and niclosamide positively enhance the anticancer activity of Hsp90 inhibitors through an autophagic pathway. They may also be new candidates for sensitizing MDR cells to Hsp90 inhibitors.

Familial Adenomatous Polyposis Improved by COX-2 Inhibitor in a Child (COX-2 억제제 투여 후 호전을 보인 가족성 선종성 용종증 1례)

  • Oh, Ki Won;Kim, Se Young;Lee, Hwan Suk;Lee, Myung Hoon;Choe, Byung Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.12
    • /
    • pp.1591-1595
    • /
    • 2002
  • Familial adenomatous polyposis(FAP) is an autosomal dominant disease characterized by numerous adenomas in the colorectum. Patients with FAP are always at risk of malignant transformation, so that colectomy is unavoidable. NSAID, such as sulindac, and selective COX-2 inhibitor, such as celecoxib, have shown a positive effect on FAP by causing polyp regression in some patients. We report a case of FAP in a 9-year-old female whose polyposis regressed markedly after six months-treatment with celecoxib.

Effects of the Geijibokryunghwan on Carrageenan-induced Inflammation and COX-2 in Hepatoma Cells

  • Joo, Shin-Tak;Ban, Chang-Gyu;Park, Soon-Gi;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.1027-1031
    • /
    • 2006
  • In oriental medicine, Geijibokryunghwan(GBH) was used to improvement various symptoms created by the thrombosis. We investigated the effects of an oriental medicinal prescriptions, Geijibokryunghwan (GBH) consisting of herbs of Cinnamomi Ramufus (Geiji; 桂枝), Poria cocos (Bokrung; 茯?), Moutan Cortex Radicis(Modanpi; 牧丹皮), Paeoniae Radix (Jakyak; 芍藥) and Persicae Semen (Doin; 桃仁) on tumor growth-inhibitory activity and cancer chempreventive activity in assays representing three maior stages of carcinogenesis. Cancer chempreventive agents include nonsteroidal anti-inflammatory drugs (NSAIDS) such as indomethacin, aspirin, piroxicam, and sulindac, all of which inhibit cyclooxygenase (COX). Effects of the GBH extracts on carrageenan-induced edema Inflammation using female (C57BL/6XC3H) Fl (B6C3Fl ) mice and tumorigenesis were examined. Finally, cyclooxygenase metabolites were determined after extracts treatment. These data suggest that GBH extracts merits investigation as a potential cancer chempreventive agent in humans.

Identification of potential candidate genes for lip and oral cavity cancer using network analysis

  • Mathavan, Sarmilah;Kue, Chin Siang;Kumar, Suresh
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.4.1-4.9
    • /
    • 2021
  • Lip and oral cavity cancer, which can occur in any part of the mouth, is the 11th most common type of cancer worldwide. The major obstacles to patients' survival are the poor prognosis, lack of specific biomarkers, and expensive therapeutic alternatives. This study aimed to identify the main genes and pathways associated with lip and oral cavity carcinoma using network analysis and to analyze its molecular mechanism and prognostic significance further. In this study, 472 genes causing lip and oral cavity carcinoma were retrieved from the DisGeNET database. A protein-protein interaction network was developed for network analysis using the STRING database. VEGFA, IL6, MAPK3, INS, TNF, MAPK8, MMP9, CXCL8, EGF, and PTGS2 were recognized as network hub genes using the maximum clique centrality algorithm available in cytoHubba, and nine potential drug candidates (ranibizumab, siltuximab, sulindac, pomalidomide, dexrazoxane, endostatin, pamidronic acid, cetuximab, and apricoxib) for lip and oral cavity cancer were identified from the DGIdb database. Gene enrichment analysis was also performed to identify the gene ontology categorization of cellular components, biological processes, molecular functions, and biological pathways. The genes identified in this study could furnish a new understanding of the underlying molecular mechanisms of carcinogenesis and provide more reliable biomarkers for early diagnosis, prognostication, and treatment of lip and oral cavity cancer.

Effects of Non-Steroidal Anti-Inflammatory Drugs on the FMLP-Induced Migration of Neutrophil (비스테로이드성 항염증제가 FMLP에 의한 사람 중성구의 이동에 미치는 영향)

  • Kim, Woo-Mi;Kang, Koo-Il
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.137-143
    • /
    • 1994
  • Enhancement or diminution of leukocyte migration to the specific site might be important factors for the development of inflammatory diseases. To investigate the effects of non-steroidal anti-inflammatory drugs (NSAIDs) on chemotaxis of neutrophil, we obtained neutrophils by Hypaque-Ficoll step gradient centrifugation and tested the effects of seven drugs on the n-formyl-leucyl-phenylalanine (FMLP)-induced migration of neutrophil using a 48-well micro chemotaxis assembly. Oxyphenbutazone, phenylbutazone, sulindac, zomepirac, and ibuprofen suppressed the migration of neutrophil at the therapeutic concentrations, however, indomethacin showed stimulation effect. IC50s for inhibition of neutrophil migration by these drugs are less than 100uM. When drugs were preincubated with FMLP, no inhibition on migration of neutrophil was observed. These results indicated that inhibitory effects of these drugs on migration of neutrophil might be related to the receptor sites of neutrophil rather than molecular inactivation of chemoattractant (FMLP). In conclusion, we suggested that the property of inhibition effects on neutrophil migration of several NSAIDs might be another mode of pharmacological action for anti-iflammatory effect, which showed significant effects at concentrations below therapeutic levels, in addition to cyclooxygenase inhibition.

  • PDF