• Title/Summary/Keyword: Sulfur oxide

Search Result 159, Processing Time 0.026 seconds

Analysis of statistical models on temperature at the Suwon city in Korea (수원시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1409-1416
    • /
    • 2015
  • The change of temperature influences on the various aspect, especially human health, plant and animal's growth, economics, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly temperature data at the Suwon monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). Among five meteorological variables, radiation, amount of cloud, and wind speed are more influence on the temperature. The radiation influences during spring, summer and fall, whereas wind speed influences for the winter time. Also, among four greenhouse gas variables and five pollution variables, chlorofluorocarbon, methane, and ozone are more influence on the temperature. The monthly ARE model explained about 43-69% for describing the temperature.

Development and Assessment of Harmful Gases Reducing Molded Fuel Using Torrefied Wood (반탄화목재를 이용한 유해가스 저감형 성형연료의 개발 및 평가)

  • LEE, Chang-Goo;EOM, Chang-Deuk;KIM, Min-Ji;KANG, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.732-744
    • /
    • 2020
  • In this study, a torrefaction of Quercus serrata to manufacture a molded charcoal was performed, investigated material properties, fuel characteristics, and performed a quantitative analysis of hazardous gases which occur during a combustion process. In addition, a molded charcoal in market was selected as a control group, and a comparative analysis was performed. As a result, the higher heating value (HHV) of the torrefied specimen was about 14% higher than that of molded charcoal, and its ash content was about 51 times lower. Moreover, after performing a quantitative assessment of hazardous gases (carbon monoxide, nitrogen oxide, and sulfur dioxide) which were produced when each specimen was combusted for 900 seconds in an enclosed chamber, it was confirmed that the maximum value of generated amount of carbon monoxide on the torrefied specimen was about 50 times lower than that of the existing molded charcoal. Therefore, it was shown that the torrefied specimen produced in this study had a higher heating value than the molded charcoal in the market, and a very low amount of carbon monoxide generated during the combustion process.

Study on the Methane Emissions from Pails Storing Liquid Swine Manure (Pail내 돈슬러리의 메탄 발생량에 관한 연구)

  • Choi, D.Y.;Park, K.H.;Kwag, J.H.;Cho, S.B.;Yang, S.H.;Hwang, O.H.;Kang, H.S.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • Many greenhouse gases occur naturally, such as water vapor, carbon dioxide, methane, nitrous oxide, and ozone. Others such as hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride ($SF_6$) result exclusively from human industrial processes. Current global warming has been linked to anthropogenic greenhouse gas concentration increases. Methods to quantify greenhouse gas emissions during animal agriculture and the possibility to apply those to circumstance in the world were studied. Various chamber methods with trace gas analyzer (TGA) were used to quantify greenhouse gas emissions from stored manure. Methane fluxes from pails storing liquid swine manure were measured. Methane emissions increased a little with time and mean was 393.2 ${\mu}g\;m^{-2}\;s{-1}$ (standard error : 4 ${\mu}g\;m^{-2}\;s{-1}$).

The Realization on GAS Sensor Module for Inteligent Wireless Communication (지능형 무선통신용 가스 센서 모듈 구현)

  • Kim, Hyo-Chan;Weon, Young-Su;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.123-132
    • /
    • 2012
  • Gas sensors has been used very differently that depending on following purposes; Automotive (exhaust gas, fuel mixture gas, oxygen, particulates), agriculture / food industry (fresh, stored, CO2, humidity, NH3, nitrogen oxide gas, organic gas, toxic gas emitted from pesticides and insecticides), industrial / medical (chemical gas, hydrogen, oxygen and toxic gases), military (chemical weapon), environmental measurements (CO and other air pollution consisting of sulfur and nitrogen gas), residential (LNG, LPG, butane, indoor air, humidity). The types of industrial toxic substances are known about 700 species and many of these exist in gaseous form under normal conditions. he multi-gas detection sensors will be developed for casualties that detect the most important and find easy three kinds of gases in marine plant; carbon dioxide(CO2), carbon(CO), ammonia(NH3). Package block consists of gas sensing device minor ingredient, rf front end, zigbee chip. Develope interworking technology between the sensor and zigbee chip inside a package. Conduct a performance test through test jig about prototype zigbee sensor module with rf output power and unwanted emission test. This research task available early address when poisonous gas leaked from large industrial site and contribution for workers' safety at the enclosed space.

ⳑ-Methionine inhibits 4-hydroxy-2-nonenal accumulation and suppresses inflammation in growing rats

  • Zhengxuan, Wang;Mingcai, Liang;Hui, Li;Bingxiao, Liu;Lin, Yang
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.729-744
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: 4-Hydroxy-2-nonenal (HNE) is a biomarker for oxidative stress to induce inflammation. Methionine is an essential sulfur-containing amino acid with antioxidative activity. On the other hand, the evidence on whether and how methionine can depress HNE-derived inflammation is lacking. In particular, the link between the regulation of the nuclear factor-κB (NF-κB) signaling pathway and methionine intake is unclear. This study examined the link between depression from HNE accumulation and the anti-inflammatory function of ⳑ-methionine in rats. MATERIALS/METHODS: Male Wistar rats (3-week-old, weighing 70-80 g) were administered different levels of ⳑ-methionine orally at 215.0, 268.8, 322.5, and 430.0 mg/kg body weight for two weeks. The control group was fed commercial pellets. The hepatic HNE contents and the protein expression and mRNA levels of the inflammatory mediators were measured. The interleukin-10 (IL-10) and glutathione S-transferase (GST) levels were also estimated. RESULTS: Compared to the control group, hepatic HNE levels were reduced significantly in all groups fed ⳑ-methionine, which were attributed to the stimulation of GST by ⳑ-methionine. With decreasing HNE levels, ⳑ-methionine inhibited the activation of NF-κB by up-regulating inhibitory κBα and depressing phosphoinositide 3 kinase/protein kinase B. The mRNA levels of the inflammatory mediators (cyclooxygenase-2, interleukin-1β, interleukin-6, inducible nitric oxide synthase, tumor necrotic factor alpha) were decreased significantly by ⳑ-methionine. In contrast, the protein expression of these inflammatory mediators was effectively down regulated by ⳑ-methionine. The anti-inflammatory action of ⳑ-methionine was also reflected by the up-regulation of IL-10. CONCLUSIONS: This study revealed a link between the inhibition of HNE accumulation and the depression of inflammation in growing rats, which was attributed to ⳑ-methionine availability. The anti-inflammatory mechanism exerted by ⳑ-methionine was to inhibit NF-κB activation and to up-regulate GST.

Study on the On-Board Test of After-Treatment Systems to Reduce PM-NOx in Low-Speed Marine Diesel Engine (선박용 저속디젤엔진 적용을 위한 PM-NOx 동시저감 배출저감설비 해상실증 연구)

  • Dong-Kyun Ko;Suk-Young Jeong;In-Seob Kim;Gye-Won An;Youn-Woo Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.497-504
    • /
    • 2023
  • In this study, Selective catalytic reduction (SCR) + Diesel particulate filter (DPF) system was installed on a ship with a low-speed engine to conduct the on-board test. The target ship (2,881 gross tons, rated power 1,470 kW@240 rpm ×1) is a general cargo ship sailing in the coastal area. Drawing development, approvals and temporary survey of the ship were performed for the installation of the after-treatment system. For performance evaluation, the gaseous emission analyzer was used according to the NOx technical code and ISO-8178 method of measurement. The particulate matter analyzer used a smoke meter to measure black carbon, as discussed by the International Maritime Organization (IMO). Tests were conducted using MGO (0.043%) and LSFO (0.42%) fuels according to the sulfur content. The test conditions were selected by considering the engine rpm (130, 160 and 180). Gaseous emission and particulate matter (smoke) were measured according to the test conditions to confirm the reduction efficiency of the after treatment system. The results of NOx emission and particulate matter (smoke) revealed that reduction efficiency was more than 90%. The exhaust pressure met the allowable back pressure (less than 50 mbar). This study confirms the importance of the on-board test and the potential of SCR + DPF systems as a response technology for reducing nitrogen oxides and particulate matter.

Manufacturing of Lime Materials with High Specific Surface Area for Desulfurization (고비표면적 탈황용 석회소재 제조)

  • Seok-je Kwon;Young-jin Kim;Yang-soo Kim;Jun-hyung Seo;Jin-sang Cho
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.69-76
    • /
    • 2024
  • In an effort to achieve the goal of carbon neutrality, countries around the world are aiming to phase out coal-fired power plants. Due to various reasons, electricity production through coal-fired power generation and sulfur oxide (SOx) emissions are expected to continue in the future. In the South Korea, sodium bicarbonate (NaHCO3) and lime materials are used to treat SOx, and most of the sodium bicarbonate is imported. Therefore, this research was conducted to replace sodium bicarbonate by improving the physical properties of lime materials using domestic limestone. Limestone was heat-treated through a box-type electric furnace and a vertical electric furnace. Due to the structural characteristics of the vertical electric furnace, a lime material(quicklime) was possible to improve the physical properties like a specific surface area and a pore volume. Then, they were reached to 22.33 m2/g specific area and 0.14 cc/g pore volume.

Comparison Study of the Pulmonary Function and Serum Carboxyhemoglobin Level Between the Traffic Policmen and Clerk Policemen (교통경찰과 비 교통경찰의 폐기능과 혈중 Carboxyhemoglobin 수치에 대한 비교연구)

  • Kim, Sung Min;Cheon, Gyu Rak;Kim, Young Wook;Kim, Joon Hyung;Lee, Ho Hak;Hong, Soon Chang;Lee, Seung Hee;Park, Sang Joon;Chung, Joon Oh;Kim, Yun Kwon;Kim, So Yon;Kim, Young Jung;Cho, Min Koo;Lee, Gwon Jun;Lee, Kyung In
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.560-569
    • /
    • 2003
  • Background : A large number of pollutants such as sulfur dioxide, nitric oxide, carbon monoxide, particulate matter, and ozone influence on the body. These pollutants put a burden on the lung and the sequelae resulting from the oxidative stress are thought to contribute to the development of fibrotic lung disease, emphysema, chronic bronchitis and lung cancer. Also, carbon monoxide generated from the incomplete combustion of carbon-containing compounds is an important component of air pollution caused by traffic exhaust fumes and has the toxic effect of tissue hypoxia and produce various systemic and neurologic complications. The objective of this study is to compare the difference of pulmonary function and serum carboxyhemoglobin(CO-Hb) level between the traffic policemen and clerk policemen. Method : Three hundred and twenty-nine of traffic policemen, and one hundred and thirty clerk policemen were included between 2001 May and 2002 August. The policemen who took part in this study were asked to fill out a questionnaire which included questions on age, smoking, drinking, years of working, work-related symptoms and past medical history. The serum CO-Hb level was measured by using carboxyoximeter. Pulmonary function test was done by using automated spirometer. Additional tests, such as elecrocardiogram, urinalysis, chest radiography, blood chemistry, and CBC, were also done. Results : $FEV_1(%)$ was $97.1{\pm}0.85%$, and $105.7{\pm}1.21%$(p<0.05). FVC(%) was $94.6{\pm}0.67%$, and $102.1{\pm}1.09%$, respectively(p<0.05). Serum CO-Hb level was $2.4{\pm}0.06%$, and $1.8{\pm}0.08%$(p<0.05). After correction of confounding factors (age, smoking), significant variables were FVC(%), $FEV_1(%)$ and serum CO-Hb level(%)(p<0.05). Conclusion : Long exposure to air pollution may influence the pulmonary function and serum CO-Hb level. But, further prospective cohort study will be needed to elucidate detailed influences of specific pollutants on pulmonary function and serum carboxyhemoglobin level.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.