• Title/Summary/Keyword: Sulfinic acid

Search Result 11, Processing Time 0.024 seconds

Hepatic and Renal cysteine Sulfinic Acid Decarboxylase Activities in Cats Fed Different Levels of Dietary Protein and Taurine

  • Park, Taesun;Quinton R. Rogers
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.47-51
    • /
    • 1999
  • In order to evaluate the dietary regulation of cysteine sulfinic acid decarboxylase (EC 4.1.1.29) in cats, acitivity and protein content of CSAD were assessed in the liver and kidney of cats fed different levels of dietary protein, with and without taurine. Four groups of cats were fed one of the follow diets for 5 weeks ; 20% protein and taurine- free diet(LP0T) ; 20% protein and 0.15% taurine diet(LPNT) ; 60% protein and taurine-free diet(HP0T); and 60% protein and 0.15% taurine diet (HPNT). CSAD activity was determined in the liver and kidney of cats by measuring 14C2 released form [1-14C]-L cysteine sulfinic acid. CSAD protein was quantified using an immunochemical method. CSAD activity was extremely low in cat tissues, among which kidney showed the highest activity which was 0.118$\pm$0.050, and 0.377$\pm$0.056 nmol.min-1.mg soluble portein-1 iin animals fed LP0T and HP0T, respectively. Even though renal CSAD protein content was 18~55% of the hepatic CSAD protein content, renal CSAD acitivity was 1.3~6.5 times of the hepatic CSAD activity . Renal CSAD acitivities of cats fed 60% protein were about 1.6~3.2 times those of animals fed 2.% protein , and hepatic CSAD activity was not significantly affected by the dietary level of protein. Taurine depletion significantly elevated both hepatic and renal CSAD activities above the values for cats having normal taurine status most probably as an adaptive response.

  • PDF

Characterization of the Interaction of Sulfiredoxin (Srx1) with a Vacoular Protein $\alpha$-Mannosidase (Ams1) in Saccharomyces cerevisiae (설피리독신과 알파-만노시다제 간의 단백질 결합 특성에 관한 고찰)

  • Barando, Karen P.;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-29
    • /
    • 2006
  • Most redox-active proteins have thiol-bearing cysteine residues that are sensitive to oxidation. Cysteine thiols oxidized to sulfenic acid are generally unstable, either forming a disulfide with a nearby thiol or being further oxidized to a stable sulfinic acid, which have been viewed as an irreversible protein modification. However, recent studies showed that cysteine residues of certain thiol peroxidases (Prxs) undergo reversible oxidation to sulfinic acid and the reduction reaction is catalyzed by sulfiredoxin (Srx1). Specific Cys residues of various other proteins are also oxidized to sulfinic acid ($Cys-So_2H$). Srxl is considered one of the oxidant proteins with a role in signaling through catalytic reduction of oxidative modification like in the reduction of glutathionylation, a post-translational, oxidative modification that occurs on numerous proteins. In this study, the role of sulfiredoxin in cellular processes, was investigated by studying its interaction with other proteins. Through the yeast two-hybrid system (Y2HS) technique, we have found that Ams1 is a potential and novel interacting protein partner of Srxl. $\alpha$-mannosidase (Ams1) is a resident vacuolar hydrolase which aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing $\alpha$-D-mannose residues. It forms an oligomer in the cytoplasm and under nutrient rich condition and is delivered to the vacuole by the Cytoplasm to Vacuole (Cvt) pathway. Aside from the role of Srxl as a catalyst in the reduction of cysteine sulfenic acid groups, it may play a completely new function in the cellular process as indicated by its interaction with Ams1 of the yeast Saccharomyces cerevisiae.

  • PDF

Base-Catalyzed Rearrangement of Some 1,3-Oxathiolane Sulfoxides: Mechanistic Viewpoint of the Sigmatropic and Elimination Reactions

  • Hahn, Hoh-Gyu;Nam, Kee-Dal;Cheon, Seung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1379-1384
    • /
    • 2004
  • Rearrangements of 1,3-oxathiolane sulfoxides 8 and 9 in the presence of base are described from a mechanistic viewpoint of sigmatropic and elimination reactions. In the presence of triethylamine the (Z)-sulfoxide 8 gave the corresponding thiolsulfinate 10 by way of dimerization of the sulfenic acid intermediate 2 at room temperature while the (E)-sulfoxide 9 was recovered even after refluxing in ethyl acetate by the reversal of the [2,3]-sigmatropic rearrangement of the sulfenic acid 4. Triethylamine promoted the developing charge separation in the transition state of the sigmatropic rearrangement of the (Z)-sulfoxide 8 to facilitate the ring opening to the sulfenic acid 2. The reason for more facile ring opening of the (Z)-sulfoxide 8 in comparison with the corresponding (E)-sulfoxide 9 is attributable to the differences in the reactivity of the hydrogen adjacent to the carbonyl group. Triethylamine was not strong base to deprotonate the carbonyl-activated methylene hydrogen of the (E)-sulfoxide 9 but enough to catalyze the sigmatropic process of the sulfoxides. The sulfenic acid 2 dimerized to the thiolsulfinate 10 while the sulfenic acid 4 proceeded the sigmatropic ring closure. In the presence of strong base such as potassium hydroxide, the elimination reaction was predominant over the sigmatropic rearrangement. In this reaction condition, both sulfoxides 8a and 9a gave a mixture of the disulfide 12, the isomeric disulfide 14, and the sulfinic acid 13. Under the strong alkaline condition an elimination of activated hydrogen from the carbon adjacent to the carbonyl group to furnish the sulfenic acid 2a and the isomeric sulfenic acid 18. The formation of the transient intermediate in the reaction was proven by isolation of the isomeric disulfide 14. The reactive entity was regarded as the sulfenic acid rather than sulfenate anion under these reaction conditions.

Studies on the Bleaching Efficiency in Newsprint Using Formamidine Sulfinic Acid

  • Choi, Won-Jung;Kim, Hyoung-Jin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.381-386
    • /
    • 2006
  • Many different types of bleaching chemicals and processes have been globally used for deinked pulp. Besides chlorine-free bleaching chemicals, hydrogen peroxide, and sodium dithionite that could be used without restriction for almost all types of fibers, chlorine-containing chemicals such as chlorine dioxide and sodium hypochlorite have also used throughout the world. Even though hydrogen peroxide is commonly used in newsprint, it could not effectively increase brightness. Experimental evaluation on the possibility of using formamidine sulfinic acid (FAS), a reducing agent, for bleaching a wood-containing deinked pulp has been carried out in this study. The effect of bleaching efficiency for FAS on operational conditions and chemical concentrations compaired to hydrogen peroxide in one and two stages was studied. FAS bleaching showed higher brightness at high temperature and low consistency, and vice versa for peroxide one. Bleaching with sodium silicate and DTPA in FAS and peroxide stage showed better results than cases without them. Sodium silicate and chelant seemed minimize the influence of transition metal ions, including manganese and iron ions, which induce both bleaching agents to decompose. As a result, FAS as a reducing agent seems more effective than hydrogen peroxide for increasing brightness and reducing yellowness. FAS and FAS sequence seemed more efficient than the other two stages of bleaching sequences with regard to the best brightness level obtained. When bleaching was conducted with FAS, COD load was just about one-third compared to peroxide, and brightness stability of the bleached pulp appeared better than peroxide after UV light irradiation.

  • PDF

Working Mechanism of Peroxiredoxins (Prxs) and Sulphiredoxin1 (Srx1) in Arabidopsis thaliana (애기장대 peroxiredoxins (Prxs)과 sulphiredoxin1 (Srx1)의 작용기작)

  • Kim, Min-Gab;Su'udi, Mukhamad;Park, Sang-Ryeol;Hwang, Duk-Ju;Bae, Shin-Chul
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1777-1783
    • /
    • 2010
  • Plants generate reactive oxygen species (ROS) as a by-product of normal aerobic metabolism or when exposed to a variety of stress conditions, which can cause widespread damage to biological macromolecules. To protect themselves from oxidative stress, plant cells are equipped with a wide range of antioxidant proteins. However, the detailed reaction mechanisms of these are still unknown. Peroxiredoxins (Prxs) are ubiquitous thiol-containing antioxidants that reduce hydrogen peroxide with an N-terminal cysteine. The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. Recently identified small protein sulphiredoxin (Srx1), which is conserved in higher eukaryotes, reduces cysteine.sulphinic acid in yeast peroxiredoxin. Srx1 is highly induced by $H_2O_2$-treatment and the deletion of its gene causes decreased yeast tolerance to $H_2O_2$, which suggest its involvement in the metabolism of oxidants. Moreover, Srx1 is required for heat shock and oxidative stress induced functional, as well as conformational switch of yeast cytosolic peroxiredoxins. This change enhances protein stability and peroxidase activity, indicating that Srx1 plays a crucial role in peroxiredoxin stability and its regulation mechanism. Thus, the understanding of the molecular basis of Srx1 and its regulation is critical for revealing the mechanism of peroxiredoxin action. We postulate here that Srx1 is involved in dealing with oxidative stress via controlling peroxiredoxin recycling in Arabidopsis. This review article thus will be describing the functions of Prxs and Srx in Arabidopsis thaliana. There will be a special focus on the possible role of Srx1 in interacting with and reducing hyperoxidized Cys-sulphenic acid of Prxs.

Gene Expression of Taurine Transporter and Taurine Biosynthetic Enzyme During Embryonic Development

  • Yoon, Seyng-Hyun;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.87-87
    • /
    • 2003
  • Taurine (2-aminoethanesulfonic acid, $^{+}NH_3CH_2CH_2{SO_3}^{-}$) is endogenous $\beta$-amino acid which is essential in fetal nutrition and development and is present in abundant quantities in several tissues of fetus. In utero, taurine deficiency causes abnormal development and abnormal function of brain, retina, kidney and myocardium. Thus, transfer of taurine into fetus is important during embryonic development. Taurine transporter (TauT) has 12 hydrophobic membrane -spanning domains, which is typical of the $Na^{+}$- and $Cl^{-}$-dependent transporter gene family. Among the various biosynthetic enzymes of taurine, cysteine sulfinic acid decarboxylase (CSD) is the rate-limiting enzyme for biosynthesis of taurine. However, the enzyme activities of taurine biosynthesis are limited in early stage of embryonic development. To analyze the expression period of TauT and CSD during embryonic development, we have investigated the gene expression of TauT and CSD using reverse transcriptase polymerase chain reaction (RT-PCR) in mouse and chicken embryos. RT-PCR anaylsis revealed that both TauT and CSD mRNAs were already expressed at Day-4.5 in mouse embryo. In chicken whole embryo, TauT and CSD mRNAs began to appear on developing times of 48 hrs and 12 hrs, respectively. TauT mRNA was detected in the organs of heart, brain and eye of the day-3 chicken embryo. Our data show that TauT and CSD mRNAs were expressed in early stage of embryonic development.

  • PDF

Application of in-situ CaCO3 forming process on recycled fibers for optical property improvement (고지의 광학적특성 개선을 위한 in-situ 탄산칼슘처리기술의 적용)

  • Park, Dong-Hui;Lee, Min-Woo;Lee, Jong-Kyu;Ahn, Ji-Whan;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.8-15
    • /
    • 2012
  • Optical property improvements for ONP (old newspaper) and OMG (old magazine) were attempted by application of in-situ $CaCO_3$ formation process on recycled fiber surfaces. Washing treatment of ONP and OMG resulted in 35~40% yield loss for around 6% brightness improvement. Washing plus bleaching process with $H_2O_2$ and FAS (formamidine sulfinic acid) improved brightness and ERIC values a little more with the same amount of yield loss as washing treatment. In-situ $CaCO_3$ formation method improved those optical properties much better than the washing plus bleaching method without loss of yield, and better than the case of adding high brightness PCC up to the same ash level. It can be said that the in-situ $CaCO_3$ formation method may be used as an effective alternative for upgrading optical properties of recycled fibers.

색지고지의 탈색에 의한 표백펄프의 재생방법

  • Yoon, Byeong-Tae;Ahn, Eun-Suk;Kim, Jeong-Eun;Kim, Tae-Jun;Song, Bong-Geun;Jeon, Ryang
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.147-147
    • /
    • 2000
  • 본 연구는 화장지용 펼프원료로 저급지인 색지(color ledger)고지를 사용함으로써 생산원 가를 절감하기 위한 목적으로 실시되었다. 일반적으로 색지 고지는 azo dyes, stilbene dyes, c copper phthalocyanine dyes와 같은 직접염료(direct dye)로 착색돼있는 것으로 보고되고있 다[) 한편, 펄프표백에 사용되는 약품은 hydrogen peroxide(HzOz), ozone(03), sodium h hypochloriten업oeD와 같은 산화표백제들과 F AS (formamidine sulfinic acid), sodium h hydrosulfite(NazSz04)와 같은 환원표백제들이 사용되는 것으로 널리 알려져 있다. 보통 화 장지용 펄프는 백색도가 78%이상이 되어야만 제품생산에 사용할 수 있는 것으로 인식되고 있다. 따라서 색지 고지를 이 목표로 달성하기 위한 탈색방법을 확립코자 다음과 같은 2가 지 실험을 실시하였다. 먼저, 색의 3원색인 빨강, 노랑, 파랑색의 색지 고지를 동일한 양으로 혼합하여 PY, HY, YH, YH, HY와 같은 5가지 방법의 실험을 실시하였다. 이중 YH 방법 이 가장 우수한 것으로 나타났다. 이 결과를 근거로 하여 여러 가지 색으로 구성된 색지 고 지가 50% 함유한 백상지 고지를 사용하여 Table과 같은 약품 및 조건으로 표백을 겸한 탈 묵실험을 실시하였다. 이 실험에서 백색도 81.8%, L* 93.3, a* -0.5, b* 4.1의 결과를 얻었다. 색지 고지의 탈색은 Y 단계에서 pH와 온도에 큰 영향을 받는 것으로 본 실험을 통하여 알 수가 있었다.

  • PDF

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

The effect of bleaching reagents on bleachabilities of DIP and environmental loads (탈묵펄프용 표백약품에 따른 표백 특성 및 표백폐수의 환경부하 영향)

  • Ahn, Chi-Deuk;Park, Jung-Yoon;Hwang, Sung-Jun;Hong, Seok-Jun;Lee, Jin-Hee;Kim, Hyoung-Jin;Chung, Sung-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.66-74
    • /
    • 2015
  • DIP(deinked pulp) was bleached by FAS, $Na_2S_2O_4$ and $H_2O_2$, which are widely used in DIP bleaching process, in order to improve optical properties of DIP, and the bleaching efficiencies of DIP and environmental loads of waste water were compared, depending on bleaching chemical dosages. With the application of different bleaching chemicals, some positive improvements were shown in optical and physical properties of bleached pulp. However, the physical properties of bleached DIP and their characteristics of wastewater were remarkably different, depending on dosages and bleaching reagents. DIP chemicals with FAS and $Na_2S_2O_4$ have higher improvement in optical and physical properties than $H_2O_2$. Also, environmental loads such as pH, turbidity, SCODcr and cationic demand were decreased in reductive bleaching process. Despite of higher effectiveness of reductive bleaching process, there were some environmental problems caused by sulfur ions from FAS and $Na_2S_2O_4$. With the method of sulfur ion controls, it would be more effective than $H_2O_2$ bleaching process.