• Title/Summary/Keyword: Sulfide

Search Result 1,552, Processing Time 0.039 seconds

Study on the 2,4,6-Trinitrotoluene reduction rate by mediation of extracellular material of mixed culture (혼합배양 미생물의 세포외 물질이 2,4,6-Trinitrotoluene 변환에 미치는 영향에 관한 연구)

  • 한기봉
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.27-31
    • /
    • 1996
  • 2,4,6-Trinitrotoluene(TNT) was reduced into intermediate products by mixed culture incubated in anaerobic condition. To test the effects of extracellular material to electron transfer between sulfide and TNT, filtered medium of mixed culture was loaded in the test tubes with TNT and sulfide. The transformation rate was measured under four different conditions. The rate under microbial activity was the fastest among under different conditions. With sulfide or filtrate alone and TNT, the reactions were measured as the slowest reactions or no reactions occured, respectively. The reaction rate coefficient were calculated by linear regression and the first order kinetic was fitted best. Also, the plot of rate coefficients (K$_{f}$) showed linear relationships when at time zero TNT and sulfide concentration were 20 mg/1 and 6.0 mM, respectively. By extrapolation, reaction rate coefficient of 100% filtrate could be calculated as 0.0054/minute. However, reaction rate was affected by different concentration of sulfide, so it is a dependent of sulfide concentration. The results of this test showed TNT reduction rate can be limited more by microbial reaction than by mediation of filtrate or sulfide and filtrate alone.

  • PDF

Measurement of Low Hydrogen Sulfide Concentrations in the Coastal Area Near the Ulsan Industrial Complex (울산 산업단지인근 해변지역에서의 저 농도 황화수소 측정)

  • Yu, Mee Seon;Yang, Sung-Bong
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1555-1562
    • /
    • 2016
  • Concentrations of hydrogen sulfide in ambient air have been measured from January 2014 to June 2016 in a coastal area near the Ulsan National Industrial Complex. The measurement sites were 1 km, 2.6 km, 5.6 km, and 20 km away from a kraft pulp mill, which is located at the most southern edge of the complex. Concentrations above 0.4 ppb were monitored every 5 min and the highest concentration of the day was determined. From a total of 775 measurement days, hydrogen sulfide concentrations > 20 ppb were recorded on 36 and 38 days at the measurement site closest to the mill and the residential area 2.6 km away from the mill, respectively. At the site farthest from the mill, the concentrations were always 20 ppb lower than the malodor regulation for the residential area but sometimes higher than the odor recognition threshold for hydrogen sulfide. Although several emission sources of hydrogen sulfide have been published in the Pollutant Release and Transfer Register of Korea, the kraft pulp mill is considered to be the biggest contributor of atmospheric hydrogen sulfide in the southern coastal area of Ulsan.

Properties and Application of Metal Sulfide Powder

  • Park, Dong-Kyu;Bae, Sung-Yeal;Ahn, In-Shup;Jung, Kwang-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.918-920
    • /
    • 2006
  • Metal sulfide powders such as MnS, $MoS_2$ and FeS are simply used to the machinery processing improvement agent and solid lubricant in powder metallurgy industrial. And then, metal sulfide powders have received relatively little attention from powder metallurgy. Recently, the portable machine is one of the important interfaces between human or human and electronic machine. With the increase of the intelligent activity, the social and industrial demands for information display device and power source are increasing. The transition metal sulfide materials (FeS, ZnS) have received considerable attention due to the large variety of its electric, optical and magnetic properties. Among the metal sulfide, $FeS_2$ is appealing superior material for applications in $Li-2^{nd}$ battery because of high capacity. ZnS is also a famous phosphor material with various luminescence properties, such as photoluminescence (PL) and electroluminescence (EL). So generally used in the fields of display, sensors and laser. Metal sulfide materials, therefore, are provided for most widely application in all industries. In recent years, material researchers have become increasingly interested in studying with synthesis of metal sulfide.

  • PDF

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 1. Performance of Biofilter Packed with Media with Immobilized Thiobacillus sp. IW and Return-sludge (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 1. Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 바이오필터 운전)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.568-574
    • /
    • 2013
  • A semi-pilot biofilter packed with media with immobilized Thiobacillus sp. IW and return sludge, was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). At the incipient and middle stages of a semi-pilot biofilter operation, the hydrogen sulfide-removal efficiency behaves regardless of an inlet-load of ammonia. However, the ammonia-removal efficiency decreased as an inlet-load of hydrogen sulfide increased. Nevertheless, at the final stage of the semi-pilot biofilter operation, the ammonia-removal efficiency was not affected by the increase of hydrogen sulfide-inlet load. It is attributed to that a serious acidification of semi-pilot biofilter-media did not occur due to continuous injection of buffer solution at the final stage of the semi-pilot biofilter operation. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter, the maximum elimination capacities of hydrogen sulfide and ammonia turned out to be ca. 58 and $30g/m^3/h$, respectively. These maximum elimination capacities were estimated to be ca. 39 and 46% less than those for lab-scaled biofilter-separate elimination of hydrogen sulfide and ammonia, respectively. Thus, for the simultaneous biofilter-treatment of hydrogen sulfide and ammonia, the maximum elimination capacity of ammonia decreased by 7% more than that of hydrogen sulfide.

Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine (Phenothiazine계 전도성고분자의 합성 및 유기박막태양전지로의 적용 연구)

  • Yoo, Han-Sol;Park, Yong-Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.93-98
    • /
    • 2013
  • In this paper, four conducting polymers (poly[(N-butyl-phenothiazine)-sulfide] (PBPS), poly[(N-hexyl-phenothiazine)-sulfide] (PHPS), poly[(N-decyl-phenothiazine)-sulfide] (PDPS), and poly[(N-(2-ethylhexyl)-phenothiazine)-sulfide] (PEHPS)) were synthesized with a high temperature and high pressure reaction. The structures of synthesized polymers were confirmed by $^1H-NMR$ and characterized by UV-Vis, cyclic voltammetry, and GPC. From the UV-Vis absorption spectra, the ${\lambda}_{max}$ values of PBPS, PHPS, PDPS, and PEHPS were 338, 341, 340, and 334 nm, respectively and their optical band gaps were 3.11, 3.13, 3.16, and 3.05 eV, respectively. To evaluate the feasible applicability as a photovoltaic cell, the devices composed of for example, ITO/PEDOT : PSS/polymer (PBPS, PDPS) : $PC_{71}BM$ (1 : 3, w/w)/$BaF_2$/Ba/Al were fabricated using the blends of the PBPS and PDPS as a donor, and $PC_{71}BM$ as an acceptor. Then, the power conversion efficiencies (PCE) of devices were estimated as 0.076% of PBPS and 0.136% of PDPS by solar simulator.

Flavor Compounds and Storage Stability of Essential Oil from Garlic Distillation (마늘 정유물의 향기성분 및 저장 안정성)

  • Jo, Kil-Suk;Kim, Hyun-Ku;Ha, Jae-Ho;Park, Moo-Hyun;Shin, Hyo-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.840-845
    • /
    • 1990
  • An attempt was made in this study to analyze flavor compounds and investigate storage stability of essential oil from garlic distillation. Optimum ratio of solvent between pentane and dichloromethane to get essential oil from garlic distillation was 2 to 1. The yield of essential oil was 0.35%(w/w) in ground garlic(${\phi}\;0.8mm$) and 0.07%(w/w) in whole garlic. From garlic essential oil six components : dimethyl sulfide, diallyl sulfide, methyl-1-propenyl disulfide, diallyl disulfide, allyl methyl sulfide and diallyl trisulfide were identified with GC and GC/MS, and diallyl trisulfide, diallyl disulfide and allyl mothyl sulfide were found to be major volatile components. Quality deterioration of garlic essential oil hardly occurred during storage for 60 days, at $5^{\circ}C$ and $25^{\circ}C$.

  • PDF

Quantitative Analysis of Allylmethyl Sulfide, Dimethyl Disulfide, and Dipropyl Sulfide in Biopesticides Containing Allium sativum Extract Using Gas Chromatography Mass Spectrometry-Head Space Sampler (Head-space GC-MS를 활용한 마늘추출물 함유 유기농자재 중 Allylmethyl Sulfide, Dimethyl Disulfide 및 Dipropyl Sulfide 분석)

  • Lim, Sung-Jin;Oh, Young-Tak;Kim, Jin-Hyo;Choi, Geun-Hyoung;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • BACKGROUND: Garlic (Allium sativum) contains polyphenols and sulfur compounds that are recognized as antioxidant, antithrombotic, anticancer, antibacterial, antimicrobial, nematicidal, and insecticidal activity. For this reason, the Environmentally-friendly Agriculture Promotion Act allowed the garlic extract as commercial biopesticide material for crop protection, nine commercial biopesticides containing A. sativum extract have been marketed in Korea. METHODS AND RESULTS: The determination of allylmethyl sulfide (AMS), dimethyl disulfide (DMDS), and dipropyl sulfide (DPS) in biopesticides containing A. sativum extract was developed and validated by gas chromatography (GC) mass spectrometry (MS) with head-space sampler. The developed method was validated, and the limit of quantification (LOQ) and recovery rates of AMS, DMDS, and DPS were 0.08, 0.32, and 0.09 mg/L and 90.3-91.3, 86.2-88.3, and 87.6-89.5%, respectively. From the nine commercial biopesticide samples, contents of AMS, DMDS, and DPS were analyzed using the developed method and results showed

Changes of Volatile Odor Components in Kimchi by Freeze-drying (동결건조에 의한 김치의 휘발성냄새성분의 변화)

  • Ko, Young-Tae;Kang, Jung-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.559-564
    • /
    • 2002
  • Volatile odor components of ripened and ripened/freeze-dried kimchi were analyzed by gas chromatograph. As ripening temperature of kimchi increased, pH of kimchi decreased, viable cell count of lactic acid bacteria of kimchi increased up to ripening temperature of $15^{\circ}C$, and sensory properties of kimchi gradually decreased. Allyl mercaptan, methyl allyl sulfide, dimethyl disulfide, diallyl sulfide, diallyl disulfide, and ethanol were detected in ripened kimchi and ripened/freeze-dried kimchi. The amounts of allyl mercaptan, methyl allyl sulfide, diallyl sulfide, and ethanol increased as the ripening temperature increased, while those of dimethyl disulfide and diallyl disulfide decreased. Freeze-drying for 24 hr removed most of the above-mentioned volatile odor components, which were further removed by freeze-drying for 48 hr.

Electrochemical Properties of Cathode according to the Type of Sulfide Electrolyte and the Application of Surface Coating

  • Yoon, Da Hye;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-136
    • /
    • 2021
  • The electrochemical performance of all-solid-state cells (ASSCs) based on sulfide electrolytes is critically affected by the undesirable interfacial reactions between oxide cathodes and sulfide electrolytes because of the high reactivity of sulfide electrolytes. Based on the concept that the interfacial reactions are highly dependent on the type of sulfide electrolyte, the electrochemical properties of the ASSCs prepared using three types of sulfide electrolytes were observed and compared. The Li2MoO4-LiI coating layer was also introduced to suppress the interfacial reactions. The cells using argyrodite electrolyte exhibited a higher capacity and Coulombic efficiency than the cells using 75Li2S-22P2S5-3Li2SO4 and Li7P3S11 electrolytes, indicating that the argyrodite electrolyte is less reactive with cathodes than other electrolytes. Moreover, the introduction of Li2MoO4-LiI coating on the cathode surface significantly enhanced the electrochemical performance of ASSCs because of the protection of coating layer. Pulverization of argyrodite electrolyte is also effective in increasing the capacity of cells because the smaller size of electrolyte particles improved the contact stability between the cathode and the sulfide electrolyte. The cyclic performance of cells was also enhanced by pulverized electrolyte, which is also associated with improved contact stability at the cathode/electrolyte. These results show that the introduction of Li2MoO4-LiI coating and the use of pulverized sulfide electrolyte can exhibit a synergic effect of suppressed interfacial reaction by the coating layer and improved contact stability owing to the small particle size of electrolyte.