• Title/Summary/Keyword: Sulfate metabolism

Search Result 79, Processing Time 0.034 seconds

The Wine Yeast Strain-Dependent Expression of Genes Implicated in Sulfide Production in Response to Nitrogen Availability

  • Mendes-Ferreira, A.;Barbosa, C.;Jimenez-Marti, E.;Del Olmo, M.;Mendes-Faia, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1314-1321
    • /
    • 2010
  • Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here, we investigated by real-time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16, and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. The strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120 h and 72 h, respectively. In the presence of 267 mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently upregulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated with sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for the genetic improvement of wine yeasts.

Cellular Distribution and Metabolism of Ginsenosides in Rat Liver (쥐 간에서의 Ginsenoside의 세포내 분포와 대사)

  • 윤수희;이희봉
    • Journal of Ginseng Research
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 1993
  • 0.5 mg of natural ginsenoside mixture and 0.8 $\mu$Ci of synthesized 14C-ginsenosides were administered orally to a rat and killed at one hour after the ginsenoside administration and the liver was fractionated into nuclear fraction, mitrochondria microsomes and cytosol fraction. Radioactivity distribu lion in subcellular fractions of the liver showed that 32o1c of total radioactivity absorbed in the liver was in cytosol fraction but a significant portion of the radioactivity was also found in mitochondria (26.6%) and microsomal fraction (18.l%). 5.8% of the total radioactivity was recovered from the nuclear fraction as well. This suggested that ginsenosides might be distributed into all subcellular fractions. Activities of mitochondrial aldehyde dehydrogenase, lactate dehydrogenase and malate dehydrogenase of the liver of rat at two hours after the ginsenoside administraion were found appreciably stimulated, suggesting that the ginsenoside concentration in the liver might be around 10-5%, since optimum concentrations for most enzyme catalyzed reactions in vitro were known to be 10-6% 10-4%. A significant portion of the radioactivity recovered from subcellular fractions of the liver was found in protein fractions, suggesting that proteins might interact with ginsenosides. Examination of protein-ginsenoside interation by gel filtration, equilibrium dialysis and amonium sulfate precipitation technique suggesting that proteins and ginsenosides do not bound covalently but weakl\ulcorner combined. When purified ginsenoside Rbl and Rgl were incubated with rat liver cytosolic enzymes for 20 min, the above ginsenosides were hydrolyzed quickly, suggesting that ginsenosides might be rapidly hydrolyzed and metabolized in the liver. It was also observed in vitro that the ginsenosides such as Rbl and Rgl were easily hydrolyzed by rat liver cytosol preparation suggesting that absorbed ginsenosides might be quickly hydrolyzed and metabolized in the liver.

  • PDF

Loess Dyeing of Soybean Fabrics (대두직물의 황토염색)

  • Lee, Sol;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.1004-1012
    • /
    • 2015
  • The purpose of this study is to investigate the loess dyeability of soybean fabric using loess as colorants. Recent days, various textile products such as inner wears, sheets and interior goods are manufactured using materials dyed with loess emphasizing its improved metabolism, anti-bacterial, deodorizing properties, and far infrared ray emissions. Soybean fabric was dyed with loess solution according to concentration of loess, dyeing temperature and dyeing time. To improve washing fastness, soybean fabric and dyed soybean fabric with loess were mordanted by mordanting agents such as sodium chloride(NaCl), Acetic acid(CH3COOH) and Aluminium Potassium Sulfate(AlK(SO4)2·12H2O). Dyeability and color characteristics of dyed soybean fabric were obtained by CCM observation. Particle size distribution of loess, the dyeability(K/S) of soybean fabric, morphology and washing durability of loess dyed soybean fabric were investigated. The results obtained were as follows; Mean average diameter of loess was 1.08µm. The main components of loess used in this study were silicon dioxide(SiO2), aluminium oxide(Al2O3), and iron oxide(Fe2O3). The content of these three component was above 75 weight %. The dyeability of soybean fabric was increased gradually with increasing concentration of loess. The optimum dyeing temperature and dyeing time were 90℃ and 60minutes expectively. The fastness to washing according to concentration of loess and mordanting method indicated good grade result as more than 4 degree in all conditions.

A TMT-based quantitative proteomic analysis provides insights into the protein changes in the seeds of high- and low- protein content soybean cultivars

  • Min, Cheol Woo;Gupta, Ravi;Truong, Nguyen Van;Bae, Jin Woo;Ko, Jong Min;Lee, Byong Won;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.47 no.3
    • /
    • pp.209-217
    • /
    • 2020
  • The presence of high amounts of seed storage proteins (SSPs) improves the overall quality of soybean seeds. However, these SSPs pose a major limitation due to their high abundance in soybean seeds. Although various technical advancements including mass-spectrometry and bioinformatics resources were reported, only limited information has been derived to date on soybean seeds at proteome level. Here, we applied a tandem mass tags (TMT)-based quantitative proteomic analysis to identify the significantly modulated proteins in the seeds of two soybean cultivars showing varying protein contents. This approach led to the identification of 5,678 proteins of which 13 and 1,133 proteins showed significant changes in Daewon (low-protein content cultivar) and Saedanbaek (high-protein content cultivar) respectively. Functional annotation revealed that proteins with increased abundance in Saedanbaek were mainly associated with the amino acid and protein metabolism involved in protein synthesis, folding, targeting, and degradation. Taken together, the results presented here provide a pipeline for soybean seed proteome analysis and contribute a better understanding of proteomic changes that may lead to alteration in the protein contents in soybean seeds.

Thiosulfate Oxidation and Mixotrophic Growth of Methylobacterium goesingense and Methylobacterium fujisawaense

  • Anandham, R.;Indiragandhi, P.;Madhaiyan, M.;Chung, Jong-Bae;Ryu, Kyoung-Yul;Jee, Hyeong-Jin;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 2009
  • The mixotrophic growth with methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium goesingense CBMB5 and Methylobacterium fujisawaense CBMB37. Thiosulfate oxidation increased the growth and protein yield in mixotrophic medium that contained 150mM methanol and 20mM sodium thiosulfate, at 144 h. Respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfite and sulfur. M. goesingense CBMB5 and M. fujisawaense CBMB37 oxidized thiosulfate directly to sulfate, and intermediate products of thiosulfate oxidation such as polythionates, sulfite, and sulfur were not detected in spent medium and they did not yield positive amplification for tested soxB primers. Enzymes of thiosulfate oxidation such as rhodanese and sulfite oxidase activities were detected in cell-free extracts of M. goesingense CBMB5, and M. fujisawaense CBMB37, and thiosulfate oxidase (tetrathionate synthase) activity was not observed. It indicated that both the organisms use the "non-S4 intermediate" sulfur oxidation pathway for thiosulfate oxidation. It is concluded from this study that M. goesingense CBMB5, and M. fujisawaense CBMB37 exhibited mixotrophic metabolism in medium containing methanol plus thiosulfate and that thiosulfate oxidation and the presence of a "Paracoccus sulfur oxidation" (PSO) pathway in methylotrophic bacteria are species dependant.

Improvement of Single Anaerobic Reactor for Effective Nitrogen Removal (효율적 질소제거를 위한 단일 혐기성반응조의 개선)

  • 한동준;류재근;임연택;임재명
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 1997
  • This research aims to remove nitrogen in the piggery wastewater by combined process with upflow anaerobic sludge blanket (UASB) and biofilm process. For the effective denitrification. anaerobic and anoxic reactors were connected to a reactor. The effluent of aerobix reactor was recycled equally with influent in the upper filter of anaerobic reactor for denitrification and outlet of UBF reactor was connected to the settling tank with $1.5{\;}{\ell}$ capacity and the settling sludge was repeatedly recycled to UASB zone. The organic loading rate of total reactor was operated from 0.4 to $3.1kgCOD/m^{3}/d$ and it was observed that the removal rate of TCOD was 80 to 95 percentage. Ammonia nitrogen was removed over 90 percentage in the less volumetric loading rate than $0.1{\;}kgN/m^{3}/d$. But because of non-limitation of organic materials, it was reduced to 70 percentage in the more volumetric loading rate than $0.6{\;}kgN/m^{3}/d$. But denitrification rate was observed 100 percentage in the all of loading rate. This is caused by the maintenance of optimum temperature, sufficient carbon source, and competition of electron acceptors. The results of COD mass balance at the $1.21{\;}kgCOD/m^{3}/d$ was observed with the 71.7% percentage of influent COD. It was revealed that the most part of organic materials was removed in the aerobic and the anaerobic reactor because 38.4 percentage was conversed into $CH_{4}$ gas and 11 percentage was removed in the aerobic reactor with cell synthesis and metabolism. Besides, 5.7% organics was used to denitrification reaction and 3.7% organics related to sulfate reduction.

  • PDF

Distribution of Murine Tissue Specific ${\gamma}$-Glutamyltransferase: -Comparison of Six Monoclonal Antibody Applications in Enzyme Linked Immunosorbent Assay, Radioimmunoassay, Immunohistochemistry, and Autoradiography- (${\gamma}$-Glutamyltransferase의 조직내 분포에 관한 연구 -단일클론항체의 효소면역측정법, 방사면역측정법, 면역조직화학검사, 자가방사기록검사 적용에 관하여 -)

  • Kim, Meyoung-Kon;Park, Youn-Kyu;Ryu, Chong-Kun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.1
    • /
    • pp.112-123
    • /
    • 1994
  • ${\gamma}$-Glutamyltransferase (GGT: E.C. 2.3.2.2.) is a glycoprotein enzyme which is involved in glutathione metabolism and amino acid transport through the plasma membrane. It is distributed widely in several organs including liver and kidney. Several isozymes of GGT have been reported and some of the isozymes may be associated with hepatocarcinogenesis. We have produced six monoclnal antibodies (mAbs) against GGT purified from the liver of 2-acetamidofluorene (AAF) treated rats. All of the six mAbs were obtained by immunizing mice with liver GGT Six hybridomas which produced anti-GGT Abs were extensively subcloned and injected into the peritoneal cavity of BALB/c mice to obtain large quantities of Abs. These mAbs were purified from ascites by ammonium sulfate precipitation and protein A sepharose CL-4B column chromatography. Using these mAbs we preformed enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunohistochemistry (IHC), and autoradiography (ARG) to study the distribution of GGT isozyme in tissue. The results indicate that GGT-mAb 1 is specific for the AAF treated liver GGT, GGT-mAb 5 for the normal liver GGT, and GGT-mAb 6 for the normal kindey GGT. These mAbs may be used to evaluate the distribution of GGT isozymes in different tissues.

  • PDF

1D Proton NMR Spectroscopic Determination of Ethanol and Ethyl Glucuronide in Human Urine

  • Kim, Siwon;Lee, Minji;Yoon, Dahye;Lee, Dong-Kye;Choi, Hye-Jin;Kim, Suhkmann
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2413-2418
    • /
    • 2013
  • Forensic and legal medicine require reliable data to indicate excessive alcohol consumption. Ethanol is oxidatively metabolized to acetate by alcohol dehydrogenase and non-oxidatively metabolized to ethyl glucuronide (EtG), ethyl sulfate (EtS), phosphatidylethanol, or fatty acid ethyl esters (FAEE). Oxidative metabolism is too rapid to provide biomarkers for the detection of ethanol ingestion. However, the non-oxidative metabolite EtG is a useful biomarker because it is stable, non-volatile, water soluble, highly sensitive, and is detected in body fluid, hair, and tissues. EtG analysis methods such as mass spectroscopy, chromatography, or enzyme-linked immunosorbent assay techniques are currently in use. We suggest that nuclear magnetic resonance (NMR) spectroscopy could be used to monitor ethanol intake. As with current conventional methods, NMR spectroscopy doesn't require complicated pretreatments or sample separation. This method has the advantages of short acquisition time, simple sample preparation, reproducibility, and accuracy. In addition, all proton-containing compounds can be detected. In this study, we performed $^1H$ NMR analyses of urine to monitor the ethanol and EtG. Urinary samples were collected over time from 5 male volunteers. We confirmed that ethanol and EtG signals could be detected with NMR spectroscopy. Ethanol signals increased immediately upon alcohol intake, but decreased sharply over time. In contrast, EtG signal increased and reached a maximum about 9 h later, after which the EtG signal decreased gradually and remained detectable after 20-25 h. Based on these results, we suggest that $^1H$ NMR spectroscopy may be used to identify ethanol non-oxidative metabolites without the need for sample pretreatment.

2-DE and MALDI-TOF MS-based identification of bovine whey proteins in milk collected soon after parturition

  • Lee, Jae Eun;Lin, Tao;Kang, Jung Won;Shin, Hyun Young;Lee, Joo Bin;Jin, Dong Il
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.635-643
    • /
    • 2018
  • Bovine milk is widely consumed by humans and is a primary ingredient of dairy foods. Proteomic approaches have the potential to elucidate complex milk proteins and have been used to study milk of various species. Here, we performed a proteomic analysis using 2-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization-time of flight mass spectrometer (MALDI-TOF MS) to identify whey proteins in bovine milk obtained soon after parturition (bovine early milk). The major casein proteins were removed, and the whey proteins were analyzed with 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The whey proteins (2 mg) were separated by pI and molecular weight across pH ranges of 3.0 - 10.0 and 4.0 - 7.0. The 2-DE gels held about 300 to 700 detectable protein spots. We randomly picked 12 and nine spots that were consistently expressed in the pH 3.0 - 10.0 and pH 4.0 - 7.0 ranges, respectively. Following MALDI-TOF MS analysis, the 21 randomly selected proteins included proteins known to be present in bovine milk, such as albumin, lactoferrin, serum albumin precursor, T cell receptor, polymeric immunoglobulin receptor, pancreatic trypsin inhibitor, aldehyde oxidase and microglobulin. These proteins have major functions in immune responses, metabolism and protein binding. In summary, we herein identified both known and novel whey proteins present in bovine early milk, and our sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed their expression pattern.

Trace element levels and selenium uptake in cereals grown in lower Austria

  • Sager M.;Hoesch J.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.479-492
    • /
    • 2003
  • Wheat, barley, rye, and maize were grown in field and pot experiments at various non-contaminated soils in order to establish uptake rates for added selenate, and to find baseline concentrations for various soil types. Edible parts (grains) and stalks of the crops were analyzed separately for Se, as well as for Ca, Cu, Fe, Mn, P, S, and Zn. The addition of Na-selenate in admixture with the NPK 20:8:8 fertilizer had no influence on the composition of the other elements investigated. The proportions of added nitrate: selenate, and sulfate:selenate were kept constant. The Se- uptake rate differed among the cereals tested, it was highest for winter wheat. Utilization of added Se in the field ranged from $0,4-4,7\%$, and and in the pots from $3,3-5,4\%$, it was markedly lower in clay soil. Whereas P and Zn were preferably found in the grains, Ca-Fe-Mn-S got enriched in the stalks. For the fields, the location had some influence upon Fe, Mn, and Zn, whereas it was not important for P, S, Cu, and strikingly, Ca. Pot and field experiments on similar soils led to different results, except for P and S. Maize (whole grains) was significantly lower in Ca, Cu, and Mn, and might even cause trace element deficiencies, if exclusively fed. Few correlations between the trace elements investigated led to the conclusion that most element contents were governed by plant metabolism. Variations of mobile Fe in the soils were balanced by uptake into the stalks. The data are compared with data from other presumably non-contaminated sites.

  • PDF