• 제목/요약/키워드: Sulfate environments

검색결과 74건 처리시간 0.022초

황산염에 노출된 구조용 합성섬유와 라텍스 개질 시멘트 모르타르의 부착특성에 미치는 광물질 혼화재의 효과 (Effect of Mineral Admixture on Bond between Structural Synthetic Fiber and Latex Modified Cement Mortar under Sulfate Environments)

  • 김동현;이정우;박찬기
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.25-34
    • /
    • 2012
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to cement mortar by forming expansive hydration products due to the reaction between cement hydration products and acid and sulfate ions. In this study, the effect of fly ash and blast furnace slag on the bond performances of structural synthetic fiber in latex modified cement mortar under sulfate environments. Fly ash and blast furnace slag contents ranging from 0 % to 20 % are used in the mix proportions. The latex modified cement mortar specimens were immersed in fresh water, 8 % sodium sulfate ($Na_2SO_4$) solutions for 28 and 50 days, respectively. Pullout tests are conducted to measure the bond performance of structural synthetic fiber from latex modified cement mortar after sulfate environments exposure. Test results are found that the incorporation of fly ash and blast furnace slag can effectively enhance the PVA fiber-latex modified cement mortar interfacial bond properties (bond behavior, bond strength and interface toughness) after sulfate environments exposure. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results under sulfate environments.

Voltammetric Study of Surfactant-Modified Carbon Electrode: $Ru(ph){_3}^{2+}$ in Sodium Dodecyl Sulfate Solution

  • Ko, Young Chun;Chung, Keun Ho
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.643-648
    • /
    • 1995
  • Cyclic voltammetric method is used to survey microscopic environments which take place at the surfactant-modified carbon electrode when the hydrophobic and hydrophilic environments of $Ru(ph){_3}^{2+}$(tris 1,10-phenanthroline ruthenium(II) chloride) is created by the addition of anionic surfactant, sodium dodecyl sulfate(SDS). Critical micelle concentration(CMC) of SDS in $Ru(ph){_3}^{2+}$ measured by cyclic voltammetry(CV) is in aggrement with that by surface tensiometry. Influence of the concentration of supporting electrolyte at surfactant-modified carbon electrode is investigated.

  • PDF

생지화학적 지표를 이용한 서해안 갯벌 퇴적층에서의 유기물 순환에 관한 연구 (Organic Matter Cycle by Biogeochemical Indicator in Tidal Mud Flat, West Coast of Korea)

  • 이동헌;이준호;정갑식;우한준;강정원;신경훈;하선용
    • Ocean and Polar Research
    • /
    • 제36권1호
    • /
    • pp.25-37
    • /
    • 2014
  • To understand the degradation processes of organic matter related to sulfate reduction by Sulfate Reduction Bacteria (SRB) in the tidal flat sediments of Hwang-do and Sogeun-ri, Tae-an Peninsula in Chungnam-do, biogeochemical characteristics were analyzed and highlighted using specific microbial biomarkers. The organic geochemical parameters (TOC, ${\delta}^{13}C_{org}$, C/N ratio, long-chain-n-alkane) indicate that most of the organic matter has been derived from marine phytoplankton and bacteria in the fine-grained sediment of Sogeun-ri, although terrestrial plant components have occasionally been incorporated to a significant degree in the coarse-grained sediment of Hwang-do. The concentration of sulfate in pore water is a constant tendency with regard to depth profile, while methane concentration appears to be slightly different with regard to depth profile at the two sites. Especially, the sum of bacteria fatty acid (a-C15:0 + i-C15:0 + C16:1w5) confirms that the these concentrations in Sogeun-ri are related to the degradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from the crude oil retained in the sediments as a result of the Hebei Spirit oil-spill accident in 2007. The methane-related microbial communities as shown by lipid biomarkers (crocetane, PMI) are larger in some sedimentary sections of Hwang-do than in the Sogeunri tidal flat. These findings suggest that methane production by microbiological processes is clearly governed by SRB activity along the vertical succession in organic-enriched tidal flats.

Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks

  • Alzeebaree, Radhwan;Gulsan, Mehmet Eren;Nis, Anil;Mohammedameen, Alaa;Cevik, Abdulkadir
    • Steel and Composite Structures
    • /
    • 제29권2호
    • /
    • pp.201-218
    • /
    • 2018
  • In this study, the effects of magnesium sulfate on the mechanical performance and the durability of confined and unconfined geopolymer concrete (GPC) specimens were investigated. The carbon and basalt fiber reinforced polymer (FRP) fabrics with 1-layer and 3-layers were used to evaluate the performances of the specimens under static and cyclic loading in the ambient and magnesium sulfate environments. In addition, the use of FRP materials as a rehabilitation technique was also studied. For the geopolymerization process of GPC specimens, the alkaline activator has selected a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) with a ratio ($Na_2SiO_3/NaOH$) of 2.5. In addition to GPC specimens, an ordinary concrete (NC) specimens were also produced as a reference specimens and some of the GPC and NC specimens were immersed in 5% magnesium sulfate solutions. The mechanical performance and the durability of the specimens were evaluated by visual appearance, weight change, static and cyclic loading, and failure modes of the specimens under magnesium sulfate and ambient environments. In addition, the microscopic changes of the specimens due to sulfate attack were also assessed by scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that geopolymer specimens produced with nano-silica and fly ash showed superior performance than the NC specimens in the sulfate environment. In addition, confined specimens with FRP fabrics significantly improved the compressive strength, ductility and durability resistance of the specimens and the improvement was found higher with the increased number of FRP layers. Specimens wrapped with carbon FRP fabrics showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabrics. Both FRP materials can be used as a rehabilitation material in the sulfate environment.

촉진시험에 의한 콘크리트중의 황산이온 확산계수 추정 (Estimation on the Sulfate Ion Diffusivity in Concrete by Accelerated Test)

  • 문한영;김성수;김홍삼;이승태;최두선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.425-428
    • /
    • 2000
  • When concrete structures are exposed to sulfate or marin environments, sulfate ions penetrated into concrete make it deteriorate. An accelerated test under potential difference method was performed to evaluate not only the sulfate ion diffusivity in ordinary portland cement and ground granulated blast-furnace slag cement concretes but the effect of slag replacement and water-cement ratio on the sulfate ions diffusivity. As the result of this study, we assumed the sulfate ion diffusivity was significantly related with total passed charge and initial current in concrete. Moreover sulfate ions penetration resistance of ordinary portland cement concrete was superior to that of ground granulated blast-furnace slag cement concrete.

  • PDF

Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments

  • Zuo, Xiao-Bao;Sun, Wei;Li, Hua;Zhao, Yu-Kui
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.79-93
    • /
    • 2012
  • This paper estimates theoretically the diffusion-reaction behaviour of sulfate ion in concrete caused by environmental sulfate attack. Based on Fick's second law and chemical reaction kinetics, a nonlinear and nonsteady diffusion-reaction equation of sulfate ion in concrete, in which the variable diffusion coefficient and the chemical reactions depleting sulfate ion concentration in concrete are considered, is proposed. The finite difference method is utilized to solve the diffusion-reaction equation of sulfate ion in concrete, and then it is used to simulate the diffusion-reaction process and the concentration distribution of sulfate ion in concrete. Afterwards, the experiments for measuring the sulfate ion concentration in concrete are carried out by using EDTA method to verify the proposal model, and results show that the proposed model is basically in agreement with the experimental results. Finally, Numerical example has been completed to investigate the diffusion-reaction behavior of sulfate ion in the concrete plate specimen immersed into sulfate solution.

Sulfate Resistance of Concrete using Ground Granulated Blast-furnace Slag for Recycling

  • Moon, Han-Young;Lee, Seung-Tae;Kim, Hong-Sam
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.508-513
    • /
    • 2001
  • Recently, ground granulated blast-furnace slag (GGBFS) has been increasingly used as additive for concrete. Many researchers reported that concrete using GGBFS had a better resistance under severe environments, such as marine or sulfate-rich soils, than Portland type cement concrete. The aim, therefore, of this study is to evaluate on the effectiveness of concrete using GGBFS when the concrete exposes to sulfate-rich environment. The detailed items for experiments show 2 series consisted of sulfate immersion test with mortar and sulfate diffusion test with concrete. The sulfate immersion test was performed for 400 days and contained reduction of compressive strength, length change and XRD analysis. For sulfate diffusion test, sulfate ions diffusivity was calculated on tile consideration of electrochemical theory by the diffusion cell test. As the results of this study, it was found that the concrete using GGBFS as additive was superior to portland type cement concrete. Consequently, the use of concrete with GGBFS for recycling may expect the durable and economical benefits.

  • PDF

실리카흄 혼합 모르타르의 황산마그네슘 저항성 (Resistance on the Magnesium Sulfate Attack of Mortars with Silica Fume)

  • 문한영;이승태;유지훈;최강식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.379-384
    • /
    • 2002
  • The deterioration of concrete due to sulfate ions in various sulfate environments such as groundwater, soil and seawater is one of important factors degrading the durability of concrete structure. The aim of this paper is to evaluate on the magnesium sulfate alttack resistance of mortars with silica fume. In this study, compressive strength loss and length change of prismatic mortars, containing silica fume, immersed in 5% magnesium sulfate solution for 270 days were investigated. Additionally, paste powders with same binder were used to observe reactants of cement matrices through the instrumental analysis such as XRD, SEM and MIP. Results obtained from this study indicate that the greater damaging effects of the magnesium soulution are due to the decomposition of the C-S-H gel to M-C-S-H.

  • PDF

해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성 (Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter)

  • 현정호;이홍금;권개경
    • 한국해양학회지:바다
    • /
    • 제8권2호
    • /
    • pp.210-224
    • /
    • 2003
  • 황산염 환원은 혐기성 해양환경에서 황산염 환원 박테리아가 진행시키는 미생물 반응이다. 황산염 환원 반응은 저층으로 공급되는 유기물 분해의 상당 부분을 담당하며, 이때 발생되는 황화가스의 독성 및 주변 금속과의 높은 반응성, 그리고 유기물 분해시 유리되는 무기 영양염들의 수층 용출 등으로 인해 연안생태계 내의 생물 다양성 및 생지화학적 물질의 순환경로에서 중요한 역할을 한다 여러 해양환경의 퇴적토에서 보고 된 황산염 환원율과 이에 영향을 미치는 주요한 환경요인들에 대해 정리한 결과, 공급되는 유기물과 여러 전자수용체들(산소, 질산염, 산화 철, 망간 등)의 분포가 황산염 환원율 및 유기물 분해시 황산염 환원의 상대적 중요성에 직접 영향을 미치는 것으로 나타났다 아울러 전자수용체의 분포와 유기물의 양과 질을 조절하는 요인으로서 온도, 식생의 유무, 생물교란의 영향에 대해 토의하였다. 끝으로, 우리나라와 같이 갯벌이 발달되고, 유기물 부하가 높은 인공양식장의 가동, 부영양화 등으로 인해 혐기성 환경과 적조의 발생빈도가 점증하는 상황에서 유기(오염)물 분해과정과 영양염 순환 경로를 보다 잘 이해하기 위해서 황산염 환원을 중심으로 한 다양한 혐기성 미생물 생태연구가 중요함을 제안한다.

Al-Si-Mg 합금의 산소 및 황화수소 환경에서의 고온부식 특성 (High Temperature Corrosion Characteristics of Al-Si-Mg Alloy in O2 and H2S/H2 Environments)

  • 이영환;손영진;이병우
    • 동력기계공학회지
    • /
    • 제21권2호
    • /
    • pp.14-19
    • /
    • 2017
  • The corrosion characteristics of Al-Si-Mg alloy were investigated in $O_2$ and $H_2S/H_2$ environments at high temperature. The weight gain and the reaction rate constant of the Al-Si-Mg alloy were measured in the oxygen and hydrogen sulfide environments at 773K. The weight gain of Al-Si-Mg alloy was showed parabolic increase in the oxygen and hydrogen sulfide environments. The reaction rate constants were confirmed to be $1.45{\times}10^{-4}mg^2cm^{-4}sec^{-2}$ in the oxygen environment and $6.19{\times}10^{-4}mg^2cm^{-4}sec^{-2}$ in the hydrogen sulfide environment respectively. As a result of XPS analysis on the specimen surface, $Al_2O_3$ and MgO compounds were detected in oxygen environment and $Al_2(SO_4)_3$ sulfate was detected in the hydrogen sulfide environment. Corrosion rate of Al-Si-Mg alloy was about 4.3 times faster in hydrogen sulfide environment than oxygen environment.