• Title/Summary/Keyword: Sulfate

Search Result 4,807, Processing Time 0.032 seconds

Sulfate Attack and the Role of Cement Compositions

  • Lee, Seung-Tae;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.465-470
    • /
    • 2007
  • This paper presents an experimental study of the sulfate resistance of mortars and pastes exposed to sodium sulfate solutions up to one year. In order to check deterioration modes due to sulfate attack, the sodium sulfate solution was varied at three concentration steps (3,380, 10,140 and 33,800 ppm of $SO_4^{2-}$ ions), and maintained at ambient temperature. The tests include a visual examination, expansion and compressive strength loss measurements as well as x-ray diffraction tests. The experimental data indicated that the use of cement with a low $C_3A$ content and low silicate ratio has a beneficial effect on the sulfate attack of mortars. In contrast, the mortars with a high $C_3A$ content and high silicate ratio became severely degraded due to the formation of ettringite, gypsum and/or thaumasite in the cement matrix.

Characterization of Zirconium Sulfate Supported on Zirconia and Activity for Acid Catalysis

  • Son, Jong Rak;Gwon, Tae Dong;Kim, Sang Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1309-1315
    • /
    • 2001
  • Zirconium sulfate supported on zirconia catalysts were prepared by impregnation of powdered $Zr(OH)_4$ with zirconium sulfate aqueous solution followed by calcining in air at high temperature. The characterization of prepared catalysts was performed using Fourier transform infrared (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and by the measurement of surface area. The addition of zirconium sulfate to zirconia increased the phase transition temperature of $ZrO_2$ from amorphous to tetragonal due to the interaction between zirconium sulfate and zirconia, and the specific surface area and acidity of catalysts increased in proportion to the zirconium sulfate content up to 10 wt% of $Zr(SO_4)_2$. Infrared spectra of ammonia adsorbed on $Zr(SO_4)2}ZrO_2$ showed the presence of Bronsted and Lewis acid sites on the surface. $10-Zr(SO_4)_2}ZrO_2$ calcined at $600^{\circ}C$ exhibited maximum catalytic activities for 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions were correlated with the acidity of catalysts measured by ammonia chemisorption method.

Durability of CFRP strengthened RC beams under wetting and drying cycles of magnesium sulfate attack

  • Rahmani, Hamid;Alipour, Soha;Mansoorkhani, Ali Alipour
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2019
  • Durability of strengthened reinforced concrete (RC) beams with CFRP sheets under wetting and drying cycles of magnesium sulfate attack is investigated in this research. Accordingly, 18 RC beams were designed and made where 10 of them were strengthened by CFRP sheets at their tension side. Magnesium sulfate attack and wetting and drying cycles with water and magnesium sulfate solution were considered as exposure conditions. Finally, flexural performance of the beams was measured before and after 5 months of exposure. Results indicated that the bending capacity of the strengthened RC beams was reduced about 10% after 5 months of immersion in the magnesium sulfate solution. Wetting and drying cycles of magnesium sulfate solution reduced the bending capacity of the strengthened RC beams about 7%. Also, flexural capacity reduction of the strengthened RC beams in water and under wetting and drying cycles of water was negligible.

Service life of concrete culverts repaired with biological sulfate-resisting mortars

  • Hyun-Sub, Yoon;Keun-Hyeok, Yang;Nguyen, Van Tuan;Seung-Jun, Kwon
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.409-419
    • /
    • 2022
  • The purpose of this study is to examine the effectiveness of biological repairing mortars on restoring the structural performance of a sewage culvert deteriorated by sulfate attack. The biological mortars were developed for protecting concrete structures exposed to sulfate attack based on the block membrane action of the bacterial glycocalyx. The diffusion coefficient of sulfate ions in the biological mortars was determined from the natural diffusion cell tests. The effect of sulfate-attack-induced concrete deterioration on the structural performance of culverts was examined by using the moment-curvature relationship predicted based on the nonlinear section lamina approach considering the sulfuric-acid-induced degradation of the structure. Typical analytical assessments showed that biological mortars were quite effective in increasing the sulfate-resistant service life of sewage culverts.

Combustibility of Cellulose Insulation Treated with Boric acid-Borax-Aluminium sulfate Formulation (붕산-붕사-Aluminium sulfate 계 셀룰로오스 단열재의 연소특성 연구)

  • Kim, Hong;In, Se-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.7-12
    • /
    • 1992
  • The smouldering combustibility of cellulose insulation treated with boric acid-borax-aluminium sulfate as combustion retardants are examined by cigarette ignition method and electrical cardrige heater method. The effectiveness of Aluminium sulfate as a third combustion are acceptable both smouldering resistance and flame resistance at 18% level of all examined formulation. As the proportion of Aluminium sulfate in the formulation was increased, the flame resistance of cellulose insulation was improved.

  • PDF

The Use of Calcium Sulfate as a Treatment of Benign Bone Tumor (양성 골종양 치료시 calcium sulfate의 이용)

  • Han, Chung-Soo;Yoon, Kyung-Ho;Ha, Jeong-Han
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • Introduction: The purpose of this study is to assess the efficacy of calcium sulfate as a bone graft substitute in the treatment of benign bone tumor. Materials and Method: Between December 2000 and November 2001, 18 patients with a benign bone tumor were treated with crettage and the defects were filled with calcium sulfate (Osteoset$^{(R)}$:Wright Medical Co. USA) as a bone graft substitute. Average age was 28.4 years and mean follow up period was 12.3 months. Calcium sulfate mixed with autograft was used in 6 cases, calcium sulfate with allograft in 2 cases, and calcium sulfate alone was used in 10 cases. The degree of absorption of calcium sulfate and new bone formation at plain radiograph was analyzed at immediate postoperative and postoperative 3 months and 6 months follow up. Results: At 3 months postoperatively, 92% of calcium sulfate was absorbed, and at 6 months postoperatively, 89% of new bone formation was observed. There was no difference in the resorption and new bone formation between the group using bone graft and the group osteoset$^{(R)}$ alone, different preoperative diagnosis and even different locations. There was no complication. Conclusion: Calcium sulfate(Osteoset$^{(R)}$) is a safe and effective bone graft substitute in the treatment of benign bone tumors, especially for the children in whom autograft is not recommandable.

  • PDF

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

Double Salt Precipitation Behavior of Rare Earth by Sodium Sulfate in Sulfuric Liquor of Waste Permanent Magnet Scrap (폐 영구자석 스크랩 황산침출용액으로부터 황산나트륨에 의한 희토류 원소 복염침전 거동 고찰)

  • Yoon, Ho-Sung;Kim, Chul-Joo;Chung, Kyeong Woo;Kim, Ji-Hye;Lee, Eun-Ji;Yoo, Seung-Joon
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.39-47
    • /
    • 2017
  • In this study, the precipitation of rare earth-sodium sulfate with sodium sulfate was conducted in order to separate rare earth from Fe in rare earth sulfate solution. Neodymium (Nd) was easily precipitated as Nd-sulfate salt with sodium sulfate, on the other hand, excessive sodium sulfate was needed for the precipitation of Dy-sulfate salt. Also neodymium not only promoted the precipitation of dysprosium sulfate salt but also increased recovery of dysprosium sulfate salt in sulfuric acid solution. At the condition of $60^{\circ}C$ precipitation temperature, 3 h reaction time, 7 equivalents sodium sulfate, the recovery of neodymium and dysprosium sulfate salt was 99.7% and 94.3% respectively from the sulfuric acid solution containing Nd of 23.39 mg/ml and Dy of 8.67 mg/ml. Lastly, from the results of separation of Dy to Nd by the method of sulfate double salt, the effect of salting out with NaCl is important to increase the grade of Dy, and 98.7% of Dy grade could be obtained in this study.

Experimental Approach on Sulfate Attack Mechanism of Ordinary Portland Cement Matrix: Part I. Sodium Sulfate Attack

  • Moon Han-Young;Lee Seung-Tae;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.557-564
    • /
    • 2004
  • This paper introduces a study carried out to investigate sodium sulfate attack caused by various reactive products. Experiments were performed on mortar and paste specimens made with ordinary Portland cement (OPC) conforming to KS L 5201 Type I. The water-cement ratios were varied from 0.35 to 0.55. It was found from the laboratory study that the water-cement ratio may be a key to control the deterioration of OPC matrix during sodium sulfate attack. Furthermore, X-ray diffraction (XRD) confirmed that ettringite, gypsum and thaumasite were the main products formed by sodium sulfate attack. These findings were well supported by thermal analysis through differential scanning calorimetry (DSC), and confirmed the long-term understanding that deterioration mechanism by sodium sulfate attack is a complicated process. Most importantly, deterioration due to sodium sulfate attack is characterized as the drastic reduction in compressive strength as well as the expansion (especially in cement matrix with a higher water-cement ratio).

Studies of the Physiological Activity of Korean Ginseng (Part 2) The effects of Ginseng Saponin on the Antimicrobial Activity of Antibiotics (인삼의 생리활성에 관한 연구 (제 2 보)항생물질의 항균활성에 미치는 인삼 Saponin의 영향)

  • 전홍기;김선희
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.3
    • /
    • pp.163-169
    • /
    • 1982
  • The possible effects in vivo on the duel usage of sinseng saponin and antibiotics were studied in vitro with microorganisms. Streptomycin.sulfate, kanamycin.sulfate and gentamycin.sulfate as being an aminoglycoside-antibiotic substance showed a general synergism by the interaction of ginseng saponin and these antibiotics. But kanamycin.sulfate and gentamycin.sulfate did not show a synergism in their original antimicrobial activity against Er-winia aroideoe. Chloramphenicol as being a benzene derivative displayed an increased antimicrobial activity by the interactions of ginseng saponin and this antibiotic against Salmonella typhi, Aerobacter aerogenes and the genus Serrotia. This antibiotic also showed the decreased antimicrobial activity against Bacillus subtilis, Bacillus megaterium and Escherichia coli, but did not show an uniform antimicrobial activity against others.

  • PDF