• Title/Summary/Keyword: Sugar Separation

Search Result 62, Processing Time 0.029 seconds

Effect of Illuminance on Color-based Analysis of Diabetes-Related Urine Fusion Analytes on Dipstick Using a Smartphone Camera (스마트폰 카메라를 활용한 뇨시험지 당뇨병관련 융합 분석인자의 색기반 분석에 미치는 외부 조도 영향)

  • Kim, Na-Kyung;Cho, Young-Sik;Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.93-99
    • /
    • 2021
  • Recently, the miniaturization and digitalization for the inspection devices of point-of-care testing (POCT) are rapidly evolving. In the urine test, a lot of researches on index paper technology are being conducted because people can be self-diagnosed through visual color comparison using a urine test paper, Dipsick. The purpose of this study is to analyze the RGB values from the color changes on Dipstick Pad, which isused for urine test, using a smartphone camera. To this end, the primary, analytes in urine wasdiabetes-related parameters such as glucose, ketone body and pH, which is the most frequently tested elements, and we pursuited to quantify the changes in dipstick color caused from artificial urine containing different ranges of sugar, ketone body, and pH. In this experiment, changes in RGB values under bright and dark illuminances were compared, and changes in RGB value were monitored as a function of concentration of analytes under the ambient illumination of laboratory. As a result, color separation at the bright luminance region was good, but it did not appearat the low luminance region, and the changed profiles in RGB value under different illuminances was suggested to correct the problem of the color separation algorithm.

Development and Study of Separator for Plum and Pulp (매실 씨 및 과육 분리기 개발 및 연구)

  • Park, Woo-Jun;Yang, Kyu-won;Kim, Hyuck-Joo;Lee, Sang-Yoon;Jung, Bo-RA;Kim, Jung-Sil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.378-385
    • /
    • 2021
  • The production of plum jangachi requires the cleaning of plums, immersion in saltwater, separation of seed and pulp, removal of impurities, and addition of sugar. In most farms, the separation of plum seed and pulp is carried out manually, requiring considerable labor, which is why plum jangachi is expensive. To solve this problem, this study designed and manufactured automatic, semi-automatic plum seed and pulp separators. During the design process, the characteristics were compared, and the machine power was determined through on-site test after manufacture. As a result, automatic machines used plums 180° arrayed and six reverse-edged blades, semi-automated plums 180° arrayed, and six blades, each with a 68% and 57% pulp recovery rate and a machine power of 80 kg/h and 62 kg/h respectively. Overall, the mechanization of plum processed food will reduce labor and increase the market value of plums compared to the previous method.

Bioethanol Production from Popping Pretreated Switchgrass (팝핑전처리한 스위치그라스로부터 바이오에탄올 생산)

  • Kim, Hyun-Joo;Bae, Hyeun-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.147-155
    • /
    • 2012
  • Switchgrass was selected as a promising biomass resource for bioethanol production through popping pretreatment, enzymatic saccharification and fermentation using commercial cellulase and xylanase, and fermenting yeast. The reducing sugar yields of popping pretreated switchgrass after enzymatic saccharification were above 95% and the glucose in thesaccharificaiton solution to ethanol conversion rate after fermentation with $Saccharomyces$ $cerevisiae$ was reached to 89.6%. Chemical compositions after popping pretreatment developed in our laboratory were 40.8% glucose and 20.3% xylose, with much of glucose remaining and only xylose decreased to 4.75%. This means that the hemicelluloses area broke off during popping pretreatment. FE-SEMexamination of substrate particles after popping pretreatment was showed fiber separation, and tearing and presence of numerous micro pores. These changes help explain, enhanced enzymatic penetration resulting in improved hydrolysis of switchgrass particles after popping pretreatment.

Expression of Polyhistidine-Containing Fusion Human HepG2 Type Glucose Transport Protein in Spodoptera Cells and Its Purification Using a Metal Affinity Chromatography

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.201-206
    • /
    • 2010
  • In order to develop procedures for the rapid isolation of recombinant sugar transporter in functional form from away from the endogenous insect cell transporter, gene fusion techniques were exploited. Briefly, BamH1-digested human HepG2 type glucose transport protein cDNA was first cloned into a transfer vector pBlueBacHis, containing a tract of six histidine residues. Recombinant baculoviruses including the human cDNA were then generated by allelic exchange following transfection of insect cells with wild-type BaculoGold virus DNA and the recombinant transfer vector. Plaque assay was then performed to obtain and purify recombinant viruses expressing the human transport protein. All the cell samples that had been infected with viruses from the several blue plaques exhibited a positive reaction in the immnuassay, demonstrating expression of the glucose transport protein. In contrast, no color development in the immunoassay was observed for cells infected with the wild-type virus or no virus. Immunoblot analysis showed that a major immunoreactive band of apparent Mr 43,000~44,000 was evident in the lysate from cells infected with the recombinant baculovirus. Following expression of the recombinant fusion protein with the metal-binding domain and enterokinase cleavage site, the fusion protein was recovered by competition with imidizole using immobilized metal charged resin. The leader peptide was then removed from the fusion protein by cleavage with porcine enterokinase. Final separation of the recombinant protein of the interest was achieved by passage over $Ni^{2+}$-charged resin under binding conditions. The expressed transport protein bound cytochalasin B and demonstrated a functional similarity to its human counterpart.

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 특성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Jo, Tae-Su;Han, Gyu-Sung;Choi, Don-Ha
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.38-45
    • /
    • 2007
  • To characterize thermo-chemical feature of sugar conversion of woody biomass, poplar wood ($Populus\;alba{\times}glandulosa$) powder was treated with supercritical water system. Supercritical water treatment (SCWT) was performed for 60 seconds at different temperatures (subcritical zone 350; supercritical zone $300,\;400,\;425^{\circ}C$) under two pressures $230{\pm}10atm$ as well as $330{\pm}10atm$, respectively, using flow type system. After separation of solid residues from SCWT products, the monomeric sugars in aqueous part converted from poplar wood powder were quantitatively determined by high performance anionic exchange chromatography [HPAEC] equipped with PAD detector and Carbo Pac PA10 column. As the temperature treated increased, the degradation of poplar wood powder was enhanced and ca 83% of woody biomass was dissolved into the water at $425^{\circ}C$. However, the pressure didn't help the degradation of biomass components. At subcritical temperature range, xylose was first formed by degradation of xylan, which is main hemicellulose component in hardwood species, while cellulose degradation started at the transition zone between sub and supercritical conditions and was remarkably accelerated at the supercritical temperature. In the supercritical water system the maximum yield of monomeric sugars amounts to ca. 7.3% based on oven dried wood weight at $425^{\circ}C$.

  • PDF

Analysis of oligosaccharides from Panax ginseng by using solid-phase permethylation method combined with ultra-high-performance liquid chromatography-Q-Orbitrap/mass spectrometry

  • Li, Lele;Ma, Li;Guo, Yunlong;Liu, Wenlong;Wang, Yang;Liu, Shuying
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.775-783
    • /
    • 2020
  • Background: The reports about valuable oligosaccharides in ginseng are quite limited. There is an urgent need to develop a practical procedure to detect and analyze ginseng oligosaccharides. Methods: The oligosaccharide extracts from ginseng were permethylated by solid-phase methylation method and then were analyzed by ultra-high-performance liquid chromatography-Q-Orbitrap/MS. The sequence, linkage, and configuration information of oligosaccharides were determined by using accurate m/z value and tandem mass information. Several standard references were used to further confirm the identification. The oligosaccharide composition in white ginseng and red ginseng was compared using a multivariate statistical analysis method. Results: The nonreducing oligosaccharide erlose among 12 oligosaccharides identified was reported for the first time in ginseng. In the comparison of the oligosaccharide extracts from white ginseng and red ginseng, a clear separation was observed in the partial least squares-discriminate analysis score plot, indicating the sugar differences in these two kinds of ginseng samples. The glycans with variable importance in the projection value large than 1.0 were considered to contribute most to the classification. The contents of oligosaccharides in red ginseng were lower than those in white ginseng, and the contents of maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, maltononaose, sucrose, and erlose decreased significantly (p < 0.05) in red ginseng. Conclusion: A solid-phase methylation method combined with liquid chromatography-tandem mass spectrometry was successfully applied to analyze the oligosaccharides in ginseng extracts, which provides the possibility for holistic evaluation of ginseng oligosaccharides. The comparison of oligosaccharide composition of white ginseng and red ginseng could help understand the differences in pharmacological activities between these two kinds of ginseng samples from the perspective of glycans.

Effects of pH, Temperature, and Protein Content on Water Binding Capacity of Hog Plasma Protein (pH, 온도, 단백질함량에 따른 돼지혈장 단백질의 보수력 변화)

  • Kim, J.B.;Yi, Y.H.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.195-198
    • /
    • 1989
  • The water binding capacity (WBC) of hoe plasma protein was investigated. The centrifugal condition for optimal separation of plasma from hog blood was fixed at 1400 g-force. The WBC of 5%-plasma-protein-solution eel increased rapidly between pH 6 and 7 but gradually after pH 7 at $85^{\circ}C$ for 30 min. The higher heating temperature demonstrated the higher WBC of 5%-plasma-protein-solution gel at pH 7 within short period of time. The WBC of 5%-plasma-protein-solution gel increased rapidly at the beginning of heating. The WBC per gram of plasma protein at pH 7 and $85^{\circ}C$ for 30 min decreased as protein concentration of the plasma solution increased.

  • PDF

Application of Emulsion Liquid Membrane to Removal of Fermentation Inhibitors from Simulated Hemicellulosic Hydrolysates (모사 헤미셀룰로오스 가수분해액으로부터 발효 저해물질의 제거를 위해 에멀젼형 액막법의 적용)

  • Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.457-462
    • /
    • 2015
  • Hemicellulosic hydrolysates contain not only sugars but also several kinds of ethanol fermentation inhibitory substances such as carboxylic acids, furans and phenolic compounds. In this work, emulsion liquid membrane (ELM) was chosen as a separation technology to remove the inhibitors. A basic simulated hemicellulosic hydrolysate was composed of xylose as sugar, dilute sulfuric acid solution as solvent, and acetic acid as carboxylic acid, and furfural as furan derivative or p-hydroxybenzoic acid(HBA) as phenolic compound was added to the hydrolysate when necessary. Acetic acid and HBA as weak acid could be selectively removed from the hydrolysates in all the ELM systems considered here, but furfural as aldehyde was quite hard to remove. Also, when HBA was added to the basic simulated hemicellulosic hydrolysate, both of acetic acid and HBA in the feed phase could be selectively removed up to 99% in an ELM system with tributyl phosphate as extractant.

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

Effects of Additives on Quality Attributes of Minced Ginger During Refrigerated Storage (첨가물이 냉장 중 생강 다대기의 품질특성에 미치는 영향)

  • Choi, Min-Seek;Kim, Dong-Ho;Lee, Kyung-Hae;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1048-1056
    • /
    • 2002
  • Quality of fresh ginger deteriorates rapidly during low temperature storage, and its storage life is short due to sprouting and microbial spoilage. The objectives of this research were to develop, using additives, a minced ginger product, which could maintain acceptable quality for over 30 days, and to investigate its quality changes during the cold storage. Storage stability of minced ginger product was investigated from the standpoint of the inhibition of brown discoloration, gas formation and liquid-solid separation. Fresh ginger was peeled and ground to produce minced ginger (control). Sodium bisulfite, L-cysteine, NaCl, sodium benzoate, modified starch, and/or xanthan gum were added to the control to minimize quality loss during storage, and to develop an optimum formula (A) of minced ginger. Samples were packed in Nylon/PE films, stored at $5^{\circ}C$, sampled at a 30-day interval, and subjected to quality evaluations. Changes in pH, surface color, gas formation, liquid-solid separation, contents of free amino acids, free sugars, organic acids, and fatty acids were determined. Gas formation was effectively inhibited in samples with sodium benzoate and/or NaCl. Samples with xanthan gum did not result in liquid-solid separation. L-Cysteine and sodium bisulfite were effective in controlling discoloration. pH decreased during storage in all samples, except sample A. Organic acid contents of all samples increased during storage, with lactic acid content showing the highest increase. Free amino acid content decreased with increasing storage time. Free sugar content of all samples decreased during storage. Sensory results showed sample A maintained acceptable quality until 90 days of storage. These results suggest that quality of minced ginger could be successfully maintained with the additions of selected additives for up to 90 days.