Browse > Article
http://dx.doi.org/10.15207/JKCS.2021.12.5.093

Effect of Illuminance on Color-based Analysis of Diabetes-Related Urine Fusion Analytes on Dipstick Using a Smartphone Camera  

Kim, Na-Kyung (College of Pharmacy, Keimyung University)
Cho, Young-Sik (College of Pharmacy, Keimyung University)
Kim, Seon-Chil (Department of Medical Engineering, Keimyung University)
Publication Information
Journal of the Korea Convergence Society / v.12, no.5, 2021 , pp. 93-99 More about this Journal
Abstract
Recently, the miniaturization and digitalization for the inspection devices of point-of-care testing (POCT) are rapidly evolving. In the urine test, a lot of researches on index paper technology are being conducted because people can be self-diagnosed through visual color comparison using a urine test paper, Dipsick. The purpose of this study is to analyze the RGB values from the color changes on Dipstick Pad, which isused for urine test, using a smartphone camera. To this end, the primary, analytes in urine wasdiabetes-related parameters such as glucose, ketone body and pH, which is the most frequently tested elements, and we pursuited to quantify the changes in dipstick color caused from artificial urine containing different ranges of sugar, ketone body, and pH. In this experiment, changes in RGB values under bright and dark illuminances were compared, and changes in RGB value were monitored as a function of concentration of analytes under the ambient illumination of laboratory. As a result, color separation at the bright luminance region was good, but it did not appearat the low luminance region, and the changed profiles in RGB value under different illuminances was suggested to correct the problem of the color separation algorithm.
Keywords
Urine; POCT; Smartphone camera; Dipstick; RGB analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Khasriya et al. (2010). The Inadequacy of Urinary Dipstick and Microscopy as Surrogate Markers of Urinary Tract Infection in Urological Outpatients With Lower Urinary Tract Symptoms Without Acute Frequency and Dysuria. Journal of Urology, 183(5), 1843-1847. DOI : 10.1016/j.juro.2010.01.008   DOI
2 L. Mackay, MJ. Lyall, S. Delaney, JA. McKnight & MWJ. Strachan. (2010). Are blood ketones a better predictor than urine ketones of acid base balance in diabetic ketoacidosis?. Practical Diabetes International, 27(9), 396-399. DOI : 10.1002/pdi.1529   DOI
3 K. E. Maduemem, Y. D. Rodriguez & B. Fraser. (2019). How Sensitive are Dipstick Urinalysis and Microscopy in Making Diagnosis of Urinary Tract Infection in Children?. Int J Prev Med, 10(1), 62. DOI : 10.4103/ijpvm.IJPVM_353_17   DOI
4 H. G. Pohl et al. (2020). The Urine Microbiome of Healthy Men and Women Differs by Urine Collection Method. Int Neurourol J, 24(1), 41-51. DOI : 10.5213/inj.1938244.122   DOI
5 L. Mackay, M. J. Lyall, S. Delaney, J. A. McKnight, & M. W. J. Strachan. (2010). Are blood ketones a better predictor than urine ketones of acid base balance in diabetic ketoacidosis?. Practical Diabetes International, 27(9), 396-399. DOI : 10.1002/pdi.1529   DOI
6 S. Booth, C. Baleriola & William D. Rawlinson. (2006). Comparison of two rapid influenza A/B test kits with reference methods showing high specificity and sensitivity for influenza A infection. J Med Virol, 78(5), 619-622. DOI : 10.1002/jmv.20584   DOI
7 D. Ryan, K. Robards, P.D. Prenzler & M. Kendall. (2011). Recent and potential developments in the analysis of urine: A review. Analytica Chimica Acta, 684(1-2), 17-29. DOI : 10.1016/j.aca.2010.10.035   DOI
8 V. Kavuru, T. Vu, L. Karageorge, D. Choudhury, R. Senger & J. Robertson. (2019). Dipstick analysis of urine chemistry: benefits and limitations of dry chemistry-based assays. Postgraduate Medicine, 225-233. DOI : 10.1080/00325481.2019.1679540   DOI
9 S. Decramer et al. (2008). Urine in Clinical Proteomics. Molecular & Cellular Proteomics, 7(10), 1850-1862. DOI : 10.1074/mcp.R800001-MCP200   DOI
10 C. D. Chin, V. Linder & S. K. Sia. (2006). Lab-on-a-chip devices for global health: Past studies and future opportunities. The Royal Society of Chemistry, 7(1), 41-57. DOI : 10.1039/b611455e   DOI
11 D. Ketan. (2016). Blood Ketones: Measurement, Interpretation, Limitations, and Utility in the Management of Diabetic Ketoacidosis. The Review of Diabetic Studies, 13(4), 217-225. DOI : 10.1900/rds.2016.13.217   DOI
12 C. C. Blyth, J. R. Iredell & D. E. Dwyer. (2009). Rapid-Test Sensitivity for Novel Swine-Origin Influenza A (H1N1) Virus in Humans. New England Journal of Medicine, 361(25), 2493-2493. DOI : 10.1056/NEJMc0909049   DOI
13 J. Wang et al. (2017). Dipstick proteinuria and risk of myocardial infarction and all-cause mortality in diabetes or pre-diabetes: a population-based cohort study. Scientific Reports, 7(1), 11986. DOI : 10.1038/s41598-017-12057-4   DOI
14 S. Misra & N. S. Oliver. (2014). Utility of ketone measurement in the prevention, diagnosis and management of diabetic ketoacidosis. Diabetic Medicine, 32(1), 14-23. DOI : 10.1111/dme.12604   DOI
15 L. Laffel. (1999). Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. diabetes metabolism research and reviews, 15(6), 412-426. DOI : 10.1002/(sici)1520-7560(199911/12)15:6<412::aid-dmr r72>3.0.co;2-8   DOI
16 S. Ahmed A & M. Ashraf A. (2020). Determination of acid dissociation constants of Alizarin Red S, Methyl Orange, Bromothymol Blue and Bromophenol Blue using a digital camera. RSC Advances, 10(19), 11311-11316. DOI : 10.1039/C9RA10568A   DOI
17 J. S. Kim, C. G. Jin, S. K. Lee, S. G. Lee & C. U. Choi. (2011). Geometric Calibration and Accuracy Evaluation of Smartphone Camera. Journal of Korean Society for Geospatial Information Science, 19(3), 115-125.
18 J. I Park, H. W. Lee & Y. S. Kim. (2015). A Study on the Proper Position of Illumination Sensor for Dimming Lighting Control Based on Practical Life: Focusing on Summer Solstice and Winter Solstice. International Journal of Smart Home 9(9), 185-194. DOI : 10.14257/ijsh.2015.9.9.20   DOI
19 S. D. Kim, Y. M. Koo & Y. H. Yun. (2017). A Smartphone-Based Automatic Measurement Method for Colorimetric pH Detection Using a Color Adaptation Algorithm. Sensors, 17(7), 1604. DOI : 10.3390/s17071604   DOI
20 S. Li, H. Joshua A & P. Ian. (2012). Point-of-care colorimetric detection with a smartphone. Lab on a Chip, 12(21), 4240-4243. DOI : 10.1039/c2lc40741h   DOI
21 K. Haakon & D. Tao. (2017). Smartphone-Based Rapid Screening of Urinary Biomarkers. IEEE Transactions on Biomedical Circuits and Systems, 11(2), 455-463. DOI : 10.1109/TBCAS.2016.2633508   DOI
22 R. V. H. Ginardi, A. Saikhu, R. Sarno, D. Sunaryono, A. S. Kholimi & R. N. T. Shanty. (2014). Intelligent Method for Dipstick Urinalysis Using Smartphone Camera. Lecture Notes in Computer Science, 66-77. DOI : 10.1007/978-3-642-55032-4_7   DOI
23 M. Ra, M. S. Muhammad, C. Lim, S. Han, C. Jung & W. Y. Kim. (2018). Smartphone-Based Point-of-Care Urinalysis Under Variable Illumination. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1-11. DOI : 10.1109/JTEHM.2017.2765631   DOI
24 P.L. Reu, W. Sweatt, T. Miller & D. Fleming. (2015). Camera System Resolution and its Influence on DigitalImage Correlation. Experimental Mechanics 55(1), 9-25. DOI : 10.1007/s11340-014-9886-y   DOI
25 H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai & A.-L. Barabasi. (2000). The large-scale organization of metabolic networks. Nature, 407(6804), 651-654. DOI : 10.1038/35036627   DOI
26 M. Bhatia, S. Kaur & Sandeep K. Sood. (2020). IoT-inspired smart home based urine infection prediction. Journal of Ambient Intelligence and Humanized Computing. DOI : 10.1007/s12652-020-01952-w   DOI
27 S. Decramer et al. (2008). Urine in Clinical Proteomics. Molecular & Cellular Proteomics, 7(10), 1850-1862. DOI : 10.1074/mcp.R800001-MCP200   DOI