• Title/Summary/Keyword: Suction system

Search Result 426, Processing Time 0.026 seconds

A Study on the Suction Power Control of Vacuum Cleaner with a Dust Sensor (먼지센서에 의한 진공청소기의 흡입력 제어에 관한 연구)

  • 백승면;김성진;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.304-307
    • /
    • 1995
  • In this paper, an optical sensing system has been developed to detect the dust in vacuum cleaner. The system works well through self-tuning mechanism, even though there are systemic variance and characteristic change which is caused by the pollution on the surface of the optical elements. Using the developed sensing system, a novel suction power control system has been proposed, which is able to be used for a long time.

  • PDF

Dust collection system optimization with air blowing and dust suction module (에어 블로어와 흡입기능을 가진 미세먼지 흡입시스템의 최적화)

  • Jeong, Wootae;Kwon, Soon-Bark;Ko, Sangwon;Park, Duckshin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.290-297
    • /
    • 2016
  • The performance of track cleaning trains to remove accumulated fine particulate matter in subway tunnels depends on the design of the suction system equipped under the train. To increase the efficiency of the suction system under the cleaning vehicle, this paper proposes a novel dust suction module equipped with both air blowing nozzles and a dust suction structure. Computational Fluid Dynamics (CFD) analysis with turbulent flow was conducted to optimize the dust suction system with a particle intake and blowing function. The optimal angle of the air blowing nozzle to maximize the dust removal rate was found to be 6 degrees. The performance of the track cleaning vehicle can be increased by at least 10 percent under an operation speed of 5km/h.

Performance Analysis of Refrigeration Cycle of Hydrocarbon Refrigerant using Suction-Line Heat Exchanger (흡입관 열교환기를 이용한 탄화수소계 냉매용 냉동사이클의 성능 분석)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2195-2201
    • /
    • 2009
  • This paper considers the influence of suction-line heat exchangers on the efficiency of a refrigeration cycle using hydrocarbon refrigerants such as R290, R600a and R1270. These suction-line heat exchangers can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analyze the performance characteristics of refrigeration cycle with suction-line heat exchanger. The influence of operating conditions, such as the mass flowrate of hydrocarbon refrigerants, inner diameter tube and length of suction-line heat exchanger, to the performance of the cycle is also analyzed in the paper. Results showed that the mass flowrate of hydrocarbon refrigerants, inner diameter tube and length of suction-line heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative Capacity Index) of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle of hydrocarbon refrigerants using suction-line heat exchanger.

Measuring thermal conductivity and water suction for variably saturated bentonite

  • Yoon, Seok;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1041-1048
    • /
    • 2021
  • An engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW) is composed of a disposal canister with spent fuel, a buffer material, a gap-filling material, and a backfill material. As the buffer is located in the empty space between the disposal canisters and the surrounding rock mass, it prevents the inflow of groundwater and retards the spill of radionuclides from the disposal canister. Due to the fact that the buffer gradually becomes saturated over a long time period, it is especially important to investigate its thermal-hydro-mechanical-chemical (THMC) properties considering variations of saturated condition. Therefore, this paper suggests a new method of measuring thermal conductivity and water suction for single compacted bentonite at various levels of saturation. This paper also highlights a convenient method of saturating compacted bentonite. The proposed method was verified with a previous method by comparing thermal conductivity and water suction with respect to water content. The relative error between the thermal conductivity and water suction values obtained through the proposed method and the previous method was determined as within 5% for compacted bentonite with a given water content.

Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining (입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구)

  • Kyoungjin Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

Flow control of air blowing and vacuuming module using Coanda effect (코안다 효과를 이용한 에어 블로어와 흡입구의 유동 제어)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The efficiency of railway track cleaning vehicle for eliminating fine particulate matter (PM10 and PM2.5) in a subway tunnel depends strongly on the structure of the air blowing and suction system installed under the train. To increase the efficiency of underbody suction system, this paper proposes a novel method to use the Coanda effect for the air blower and dust suction module. In particular, through Computational Fluid Dynamics (CFD) analysis, the flow control device induced by the Coanda effect enables an increase in the overall flow velocity and to stabilize the flow distribution of the suction module at a control angle of $90^{\circ}$. In addition, the flow velocity drop at the edge of the air knife-type blower can be improved by placing small inserts at the edge of the blower. Those 4 modular designs of the dust suction system can help remove the dust accumulated on the track and tunnel by optimizing the blowing and suction flows.

The Performance Evaluation of R407C and R410B in a Residential Window Air-Conditioner

  • Kim, Man-Hoe;Shin, Jeong-Seob;Kim, Kwon-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.148-157
    • /
    • 1998
  • This study presents test results of a residential window air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests has been carried out for the basic and liquid-suction heat exchange cycles in a psychometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-suction heat exchange cycle was also considered to improve the system performance. Test results were compared with those for the basic R22 system. The modified system with a liquid-suction heat exchanger increased cooling capacity and energy efficiency by up to 5%.

  • PDF

A Study on the Suitability of Suction Caisson Foundation for the 5Mw Offshore Wind Turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 연구)

  • Kim, Yong-Chun;Chung, Chin-Wha;Park, Hyun-Chul;Lee, Seunug-Min;Kwon, Dae-Yong;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Foundation plays an important role in the offshore wind turbine system. Different from conventional foundations, the suction caisson is proven to be economical and reliable. In this work, three-dimensional finite element method is used to check the suitability of suction caisson foundation. NREL 5MW wind turbine is chosen as a baseline model in our simulation. The maximum overturning moment and vertical load at the mudline are calculated using FAST and Bladed. Meanwhile the soil-structure interaction response from our simulation is also compared with the experiment data from Oxford university. The design parameter such as caisson length, diameter of skirt and spacing of multipod are investigated. Accordingly based on these parameters suggestions are given to use suction caisson foundations more efficiently.

A semi-analytical solution to spherical cavity expansion in unsaturated soils

  • Tang, Jianhua;Wang, Hui;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • This paper presents a rigorous solution for spherical cavity expansion in unsaturated soils under constant suction condition. The hydraulic behavior that describes the saturation-suction relationship is modeled by a void ratio-dependent soil-water characteristic curve, which allows the hydraulic behavior to fully couple with the mechanical behavior that is described by an extended critical state soil model for unsaturated soil through the specific volume. Considering the boundary condition and introducing an auxiliary coordinate, the problem is formulated to a system of first-order differential equations with three principal stress components and suction as basic unknowns, which is solved as an initial value problem. Parameter analyses are conducted to investigate the effects of suction and the overconsolidation ratio on the overall expansion responses, including the pressure-expansion response, the distribution of the stress components around the cavity, and the stress path of the soil during cavity expansion. The results reveal that the expansion pressures and the distribution of the stress components in unsaturated soils are generally higher than those in saturated soils due to the existence of suction.

Endotracheal Colonization and Ventilator-associated Pneumonia in Mechanically Ventilated Patients according to Type of Endotracheal Suction System (기관 흡인술 유형에 따른 인공호흡기 적용 환자의 기관 내 균집락화와 폐렴 발생률)

  • Cha, Kyeong-Sook;Park, Ho-Ran
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • Purpose: This study was conducted to identify endotracheal colonization and the incidence of ventilator-associated pneumonia related to the type of endotracheal suction system. Methods: The participants in this study were ICU patients hospitalized between October 2009 to March 2010 who used ventilators for over 48 hr with closed (CSS, n=30) or open (OSS, n=32) suction systems. To standardize the pre-intervention suction system, a suctioning protocol was taught to the ICU nurses. Collected data were analyzed using ${\chi}^2$-test, Fisher's exact test, Wilcoxon rank sums test, Wilcoxon test, Log-rank test and Poisson regression. Results: Endotracheal colonization was higher in OSS than CSS from day 1 to day 8 while using a ventilator and there was a significant difference between the two groups. The CSS reached 50% of endotracheal colonization by the 4th day, whereas for the OSS, it was the 2nd day (p=.04). The incidence of ventilator-associated pneumonia showed no significant difference. Conclusion: For patients with a high risk of pneumonia, CSS must be used to lower endotracheal colonization.