• Title/Summary/Keyword: Suction Pipe

Search Result 69, Processing Time 0.026 seconds

Improving Diesel Car Smoke Measurement Probe Performance of Diesel Cars Using Hole Position (홀 위치에 따른 디젤자동차 매연 측정프로브 성능 개선 연구)

  • Chae, Il-Seok;Kim, Eun-Ji;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • Car inspection systems are regularly carried out by the state to ensure the safety and emission status of cars, thereby improving the safety and quality of life by reducing fine dust and greenhouse gases that are the main culprits of vehicle defects and air pollution. These automobile inspections are largely divided into either regular or comprehensive inspections. This study analyzed the smoke measuring probes used in the lug - down 3 mode. In the previously issued paper "Improvement of Soot Probe Efficiency for Automotive Emission Measurement," an improved smoke measurement probe(B) improved on the problems that arise from the current smoke measurement probe (A). In this study, a technique that can improve the probe's inhalation efficiency over the improved (B) probes was applied to probes (C). Probe (C) involves a structure designed close to the center of the circumference of the exhaust pipe, and the suction efficiency was improved by adding a variable center unit.

Improvement of Soot Probe Efficiency for Automotive Emission Measurement (자동차 배기가스 측정을 위한 매연프로브 효율 개선에 관한 연구)

  • Chae, Il-Seok;Kim, Sang-Yu;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.74-81
    • /
    • 2019
  • Cars are inspected in the transport sector for their ability to achieve the greenhouse gas reduction targets. A vehicle (automobile) inspection broadly consists of regular and total checks, and both the safety level and the amount of exhaust gas are checked simultaneously during a vehicle inspection. This study deals with the efficiency of a soot probe to measure soot emissions from diesel vehicles. When the vehicle exhaust gas measurement is performed, there may be a difference between the exhaust gas temperature and the soot suction amount because of the different shape and angle of the exhaust port for each vehicle type. This may result in some incidents where the correct inspection nonconforming vehicle is not selected. Therefore, in this study, the shape of the probe was improved to increase the soot measurement efficiency under the condition of the exhaust pipe angle change.

A Study on the Improvement of Smoke Probe Performance in Diesel Vehicles Using Korean 147 Test Method (한국형 147검사 방법을 이용한 디젤자동차의 매연프로브 성능 향상 연구)

  • Kim, Jae-Yeol;Chae, Il-Seok;Kim, Sang yu;Yang, Dong Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2021
  • In the previous study, a study was conducted to improve the exhaust gas intake efficiency by improving the existing soot measurement probe in the shape and angle of the exhaust port. As a result, it can be seen that the smoke measurement performance according to the shape and angle is improved. In previous studies, the performance of the soot probe was not confirmed for the Korean KD 147 mode, which has a low suction flow rate and a long inspection time. So, we would like to confirm the improvement of the smoke probe performance of the Korean KD 147 mode, which is close to the actual driving conditions. The probe used in this study is another type of probe, and has a circular ring shape instead of a rib and variable center position unit, so the probe center hole is located close to the center of the exhaust pipe.

A Case Study on the TEMAZ Explosion Accident in Semiconductor Process (반도체 공정에서 TEMAZ폭발사고 사례연구)

  • Yang, Won-Baek;Rhim, Jong-Kuk;Hong, Seong-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.52-60
    • /
    • 2017
  • In diffusion process exhaust line during semiconductor manufacturing process, In order to improve the transportation efficiency in the piping by removing "The reaction by-product, $ZrO_2$ and The unreacted material, TEMAZ, TMA, $O_3$, etc" and "Powder being deposited", the piping temperature was raised to $80^{\circ}C$ or more by using the heater jacket, and the bellows at the rear end of the vacuum pump ruptured. So conducted a case study and try to prevent the similar accidents from occurring through case studies. The causes of the accident were analyzed as follows: the inflow of outside air due to the generation of a gap on the suction side of the vacuum pump and heating the pipe with the heater jacket resulted in the overpressure in the pipe due to the volumetric expansion of the gas generated by decomposition of the unreacted TEMAZ, It can be assumed that the most vulnerable bellows of the piping has been ruptured. In order to prevent such accidents, This study is aimed to identify the cause of pipeline rupture accident and to establish safety measures for the prevention of similar accidents by evaluating physical hazards of TEMAZ, which is assumed to be the cause of pipe rupture accident.

Variation of abrasive feed rate with abrasive injection waterjet system process parameters (연마재 투입형 워터젯 시스템의 공정 변수에 따른 연마재 투입량 변화)

  • Joo, Gun-Wook;Oh, Tae-Min;Kim, Hak-Sung;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2015
  • A new rock excavation method using an abrasive injection waterjet system has been developed to enhance the efficiency and reduce the vibration of tunnel excavation. The abrasive feed rate is an important factor for the cutting performance and the economical efficiency of waterjet-based excavation. In this study, various experiments were performed to explore the effects of major process parameters for both the abrasive feed rate and the suction pressure occurring inside the mixing chamber when the abrasives are inhaled. Experimental results reveal that the abrasive feed rate is affected by geometry parameters (abrasive pipe height, length, and tortuosity), abrasive parameters (abrasive particle size), and jet energy parameters (water pressure and water flow rate). In addition, the relation between the cutting performance and the abrasive feed rate was discussed on the basis of the results of an experimental study. The cutting performance can be maximized when the abrasive feed rate is controlled appropriately via careful management of major process parameters.

A study on the Use of Low and Wet Land By Underdrainage(1) (암반비수에 의한 저온지이용에 관한 연구(1))

  • 주재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.2
    • /
    • pp.1454-1459
    • /
    • 1968
  • Althow underdrainage has been studied for long time, it is the first attempt in Korea to execute using PVC(Plastic) suction pipes in the low and wet field. First, an execution plot and a control plot were set, and the drainage method and soil temprature in the excuted plot have been examined. The growth of crops and the yeild, the improvement of soil and water quality of irrigation are to be dealt during the next experimental period. The experimental method and the results obtained through the experimentations are as follows: Method 1) Depth: 1meter. interval: 5meters Trench was performed by labor. 2) PVC(plastic) sucking pipe filters were wound with glass nylon. 3) Two. horizontal looks were set in the 5a. plot. Results 1) The soil temprature in the excuted plot went up by $1.2^{\circ}C$ in average than in the control plot during the two years(1966-67) of irrigation period, and the maximum temprature raised a day was $3^{\circ}C$ 2) The under ground water level in the executed plot went down by 45cm. 3) The yield increases were 64% in potato, 57% in barley, and 21% in rice. The yield, soil, and the quality of irrigated water will be experimented during the next experemental period.

  • PDF

Analysis of noise source for refrigerant-induced noise in suction and discharge piping systems of compressor installed in air conditioner outdoor unit using wavenumber-frequency decomposition technique (파수-주파수 분리 기법을 통한 에어컨 실외기 압축기 흡배기 배관계 냉매 유발 소음원 분석)

  • Sangjun Park;Sangheon Lee;Cheolung Cheong;Jinhyung Park;Jangwoo Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.5
    • /
    • pp.570-583
    • /
    • 2024
  • The supply of inverter-type air conditioners for cooling in summer and heating in winter is increasing. In addition, since the operating speed of the compressor has been continuously increased for higher efficiency and higher performance, the flow speed of the refrigerant has also increased. As a result, it results in the increase of the relative contribution of flow-born noise to total noise generated from outdoor unit, and this highlights the importance of designing for the noise reduction to addressing flow-borne noise and requires necessary to analyze noise generation mechanisms by flow borne noise. Therefore, in this paper, the noise generation mechanisms by flow borne noise from air conditioner outdoor unit was numerically investigated. The wall pressure field was predicted using Large Eddy Simulation(LES) for the refrigerant flow inside the pipe, and the vibration and radiated noise were predicted using structure and acoustic coupled scheme based Finite Element Method (FEM). In this step, the compressible/in-compressible pressure field were separated using Wavenumber-Frequency Analysis(WFA) for inner pipe wall, and this results were used in analyzing the noise source due to refrigerant flow.

Effect of Ozone Application on Sulfur Compounds and Ammonia Exhausted from Aerobic Fertilization System of Livestock Manure (가축분뇨 호기적 퇴.액비화시 발생하는 기체 중의 황 화합물과 암모니아에 대한 오존처리 효과)

  • Jeong, Kwang Hwa;Whang, Ok Hwa;Khan, Modabber Ahmed;Lee, Dong Hyun;Choi, Dong Yoon;Yu, Yong Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.4
    • /
    • pp.118-126
    • /
    • 2012
  • In this study, two types of ozone generating experimental instrument were installed in commercial livestock manure fertilization facility, which can treat hundred tons of pig manure in a day. Gas samples to be treated were collected from the upper part of the liquid fertilization system and composting system of the commercial livestock manure fertilization facility. The gas sample was flowed to oxidation reactor through pipe line by suction blower, therefore, contacted with ozone. Ammonia and sulfur compounds of gas samples collected from the inlet and outlet point of the experimental instrument were analyzed. The oxidation effect by the contact with ozone was higher in sulfur compounds than ammonia. Ammonia content was reduced about 10% by ozone contact. Sulfur compounds, on the other hand, reduced significantly while treated with ozone. In case of gas sample collected from liquid fertilization system, the concentrations of hydrogen sulfide ($H_2S$), methyl mercaptan (MM), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS) of inlet gas were 50.091, 4.9089, 27.8109 and 0.4683 ppvs, respectively. After oxidized by ozone, the concentrations of sulfur compounds were 1.2317, 0.3839, 14.7279 and 0.3145 ppvs, respectively. Another sample collected from aerobic composting system was oxidized in the same conditions. The concentrations of $H_2S$, MM, DMS and DMDS of the sample collected from inlet point of the reactor were 40.6682, 1.3675, 24.2458 and 0.8289 ppvs, respectively. After oxidized, the concentrations of $H_2S$, MM, DMS, and DMDS were reduced to 3.013, ND, 8.8998 and 0.3651 ppvs, respectively. By application of another type of ozone, the concentrations of $H_2S$, MM, DMS and DMDS of inlet gas were reduced from 43.397, 1.4559, 3.6021 and 0.4061 to ND, ND, ND, and 0.21ppvs, respectively.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.