• Title/Summary/Keyword: Suction Air Flow

Search Result 156, Processing Time 0.026 seconds

A Study on the Spray Behavior of Air-Assist Type Gasoline Fuel Injector in Intake Port (공기보조형 가솔린 연료분사기의 흡기포트내 연료분무 거동에 관한 연구)

  • Rho, Byung-Joon;Kang, Shin-Jae;Kim, Won-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.92-103
    • /
    • 1999
  • The fuel spray behavior in the intake port of an electronic control port irijection gasoline engine has a strong influence on engine performance, exhaust emission and fuel consumption. Thus, in this study, fuel spray behavior and flow characteristics of the air assist gasoline spray injected into a suction flow in a simulated rectangular intake port have boon investigated. Macro-behavior of spray characteristics was investigated by means of visualization and the measurements of SMD and velocity were made by PDPA. For analysis the flow field with droplets size, droplets are classified five droplets size groups. As a result, the normal distance of suction flow increasing, the relatively large droplets distribution and SMD increase because small droplets easily follow suction flow. Near impinging wail, after impinging against the wall, secondary atomized small droplets of D < $30{\mu}m$ bound from the wall. And the increasement of suction flow progress to the large droplets of D > $100{\mu}m$ distribution. Therefore, SMD are apparently increased near impinging wall, Z/d = 9.0.

Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining (입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구)

  • Kyoungjin Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

Air Layer Effect on the Performance Improvement of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Shin, Byeong-Rog;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

The Performance Evaluation of R407C and R410B in a Residential Window Air-Conditioner

  • Kim, Man-Hoe;Shin, Jeong-Seob;Kim, Kwon-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.148-157
    • /
    • 1998
  • This study presents test results of a residential window air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests has been carried out for the basic and liquid-suction heat exchange cycles in a psychometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-suction heat exchange cycle was also considered to improve the system performance. Test results were compared with those for the basic R22 system. The modified system with a liquid-suction heat exchanger increased cooling capacity and energy efficiency by up to 5%.

  • PDF

Characteristics of the Gasoline Spray near Impinging Wall in Suction Flow (흡입유동 중 충돌벽면 근처에서 가솔린 분무특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1285-1293
    • /
    • 2000
  • In port fuel injection system of SI engines, injected fuel is impinged onto the surface of intake valves and port-wall, and then formed the wall flow under the cold start operation. Wall flows entrained into the cylinder result in the unsteady and nonuniform mixture formation. Therefore, the spray impingement to the wall is considered as having negative influences such as lowering combustion efficiency and causing unburned hydrocarbon emissions. This study investigates the spray characteristics of the wall impinging air-assist spray in suction air flow. A PDPA was used to analyze the flow characteristics under the different conditions such as impingement angle and supplied air. Experimental data concerning the impinging sprays has been obtained in the vicinity of the wall. Measured droplets divided into the pre-impinging droplets which denote as the positive normal velocities and post-impinging droplets that describe as the negative normal velocities for the suction flow. Their velocities, size distributions and SMD are comparatively analyzed before and after the impingement.

The effect of suction pipe leaning angle on the internal flow of pump sump

  • Lee, Youngbum;Kim, Kyung-Yup;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.849-855
    • /
    • 2015
  • A better flow condition for the intake of pump is provided by the sump pump that connects the forebay to the intake of the pump station. If the suction sump is improperly shaped or sized, air-entraining vortices or submerged vortices may develop. These phenomena may greatly affect pump operation if vortices become sufficiently large. Moreover, any remaining vortices in the pump flow passage may result in an increase in the noise and vibration of the pump. Therefore, the vortices in the pump flow passage must be reduced to achieve good pump sump station performance. In this study, the effect of suction pipe leaning angle on the pump sump's internal flow is investigated. Additionally, a pipe type with an elbow shape is investigated. The results show that the air entraining vortices occur under the condition of a water level ratio H/D = 1.31 for each suction pipe type.

EFFECTS OF PLACEMENT OF A TORUS PLATE COVER ON AIR FLOW IN A SPINNER EQUIPMENT (원환형 덮개장착이 스피너 장비의 기류에 미치는 영향)

  • Kwak H.S.;Yang J.O.;Lee S.W.;Park S.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.52-58
    • /
    • 2006
  • A numerical investigation is made of air flow in a spinner equipment used for cleanning and drying flat display panels. A unique feature of the spinner under question is the placement of a torus plate cover over the rotating plate. The turbulent flow is driven by rotation of a large disk and suction by the exhaust system connected to vacuum chamber. The flow is modelled as an axisymmetric two-dimensional flow and computation is conducted by using the FLUENT package with a version of k-$\varepsilon$ turbulence model. The required capacity of the exhaust system is assessed numerically. The usefulness of the cover in controlling air flow circulation is examined. A computational trouble shooting is attempted to resolve the problem of panel rising which occurred in real experiment.

Noise Reduction of Reciprocating Type Air Compressors (왕복동식 공기압축기의 소음저감에 관한 공학적 대책 연구)

  • Lee, Kwang-Gil;Park, Jae-Suk
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.12-16
    • /
    • 2006
  • This paper deals with the noise evaluation and noise reduction of a reciprocating air-compressor. The reciprocating air-compressor is widely used in the small and medium sized industrial firms, many employees exposed and irritated by their noise in the workplace. Thus, appropriate noise control actions should be taken to prevent hearing loss due to the its noise exposure. Lead-wrapping techniques are employed to identify the contribution of principal noise sources which are generally known to be motor, belts, suction valves, discharge valves, moving parts, and flow-induced noise caused by edges or discontinuities along the flow path including expansions, contractions, junctions and bends. As a result, the main noise sources of the air-compressor are categorized by the suction and discharge noise, valve noise, and compressed air tank noise. Based on the investigations, mufflers are designed to reduce both the suction and discharge noise and the compressed-air tank noise. Instead of the conventional valve plate, polyethylene resin is used the reduction of valve impact noise. In addition, attempts are made to reduce the valve noise propagation to the cylinder head and the compressor tank by using the insulation casings. As a result of the countermeasure plans, a noise reduction up to 10dB(A) could be achieved for the air-compressor.

Experimental Analysis on the Performance Characteristics of an Ejector according to Inlet Pressure and Nozzle Position (운전조건 및 노즐위치에 따른 이젝터 성능특성에 관한 실험적 연구)

  • Lee, Jae Jun;Jeon, Yongseok;Kim, Sun Jae;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.263-268
    • /
    • 2015
  • In this study, the performance of an ejector in the refrigeration cycle was experimentally studied using R600a. The performance of the ejector is analyzed according to the inlet pressure and nozzle position. The increase in the primary nozzle pressure decreased the pressure difference across the ejector. In the low entrainment region, the increased suction flow pressure led to an increase in the pressure difference. In the high entrainment region, the pressure difference was inversely proportional to the suction pressure. The effects of nozzle position ($L_n$) were also analyzed and for $L_n<0$, the decreased suction chamber volume led to a large pressure drop with the small increase in the suction mass flow rate. For $L_n>0$, the increased $L_n$ disturbed the primary nozzle flow and thus an increase in the primary nozzle flow increased the pressure lifting effect. In contrast, the increased suction mass flow rate decreased the pressure difference. When the nozzle outlet was located at the mixing part entrance ($L_n=0$), the ejector showed the highest pressure lifting effect.

An experimental study on the performance of a window system air-conditioner using R407C and R410B (R407C 및 R410B 적용 창문형 에어컨의 성능에 관한 실험적 연구)

  • Kim, M.H.;Shin, J.S.;Kim, K.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-544
    • /
    • 1997
  • This study presents test results of a residential window system air-conditioner using R22 and two potential alternative refrigerants, R407C and R410B. A series of performance tests was performed for the basic and liquid-suction heat exchange cycle in a psychrometric calorimeter test facility. For R407C, the same rotary compressor was used as in the R22 system. However, compressor for the R410B system was modified to provide the similar cooling capacity. The evaporator circuit was changed to get a counter-cross flow heat exchanger to take advantage of zeotropic mixture's temperature glide, and liquid-line suction-line heat exchange cycle was also considered to improve the performance of the system. Test results were compared to those for the basic R22 system.

  • PDF