• Title/Summary/Keyword: Succinic acid production

Search Result 114, Processing Time 0.025 seconds

N-Acyl Amino Acid Surfactant(15) Synthesis and Properties of Sodium N-(2-Dodecyl Succinoyl) l-Glutamate (N-아실아미노산계 계면활성제 (제15보) Sodium N-(2-Dodecyl Succinoyl) l-Glutamate의 합성 및 계면성)

  • Kwack, Kwang-Soo;Yoon, Young-Kyoon;Jeong, Noh-Hee;Kim, Duck-Gwon;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2001
  • These N-acyl amino acid surfactants is normally produced by reaction of acid anhydride with sodium ${\ell}-glutamate$ hydrolysates under Schotten-Baumann condition i.e., in alkaline aqueous medium. To avoid using fatty acid chlorides, acylations were also carried out with the fatty acids themselves or with their methyl esters, but unfortunately these methods cannot be used in practice, dodecenyl succinic anhydride, was to be studied for their suitability as acylating agents the production if acylated glutamine hydrolysates. The surface activities including surface tension forming power, forming stability and emulsifying power were measured. The experimental results revealed that the products have a good emulsifying power. Thus, there derivatives will be expected to be used an emulsifying agent for O/W type cosmetic emulsion.

Quality Characteristics of Fermented Soybean Products by Bacillus sp. Isolated from Traditional Soybean Paste (전통장류 유래 Bacillus sp.를 이용한 콩 발효물의 품질 특성)

  • Lee, Sun Young;Eom, Jeong Seon;Choi, Hye Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.5
    • /
    • pp.756-762
    • /
    • 2014
  • This study evaluated the quality characteristics of soybean fermented with several Bacillus sp., which were selected based on their high enzymatic and antimicrobial activities. Total aerobic bacterial counts of fermented soybeans with HJ5-2 ($3.00{\times}10^9CFU/mL$) were the highest among all strains. Lactic acid bacteria numbered $2.50{\times}10^2{\sim}7.30{\times}10^4CFU/mL$ in soybeans fermented with isolates. Amylase and protease activities of the RD7-7 sample were the highest among all strains. Reducing sugar and amino-type nitrogen contents of fermented soybeans with HJ18-4 (2.35%) and RD7-7 (227.96 mg%) were the highest. Total amino acid contents of the samples were 16.62~18.38%, and glutamic acid, aspartic acid, leucine, lysine, arginine were major amino acids. Oxalic acid (36.51~63.57 mg/100 g) and succinic acid (429.49~600.15 mg/100 g) were the predominant organic acid. These results provide useful information for development starter (single and complex) as well as for the production of high quality fermented soybean foods.

Enhancement of Succinate Production by Organic Solvents, Detergents, and Vegetable Oils

  • Kang, Kui-Hyun;Ryu, Hwa-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.191-195
    • /
    • 1999
  • Bioconversion of fumarate to succinate by Enterococcus sp. RKY1 was enhanced when Tween surfactant, organic solvent, and vegetable oil were added to the fermentation medium. The maximum amount of succinate produced was 80.4 g/l after a 24 h incubation when Tween 80 was added to the culture to a final concentration of 0.1 g/l. Triton X-l00 was observed to damage the enzymes and inhibit the formation of succinate. The addition of 10 ml/l acetone increased the production of succinate by 110%. Vegetable oils used were found to be effective for succinate production as well as for the cell growth. Similar productivity increases were obtained with corn oil and Tween 80 plus biotin with the total productivity being 3.6 g/l/h, and 3.5 g/l/h, respectively, which was approximately 25% greater than that of the control. Therefore, these results indicate that com oil can be considered the most appropriate agent for the production of succinate where succinic acid was primarily used in the production of food, medicine, and cosmetics.

  • PDF

Effects of Organic Acids on In Vitro Ruminal Fermentation Characteristics and Methane Emission (Organic acids 의 첨가가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향)

  • Ok, Ji Un;Ha, Dong Uk;Lee, Shin Ja;Kim, Eun Tae;Lee, Sang Suk;Oh, Young Kyun;Kim, Kyoung Hoon;Lee, Sung Sill
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1324-1329
    • /
    • 2012
  • The objective of this study was to evaluate the in vitro effects of organic acids on methane emission and ruminal fermentation characteristics. We expected our methodology to result in a decrease of methanogens attached to the surface of rumen ciliate protozoa by addition of organic acids and in particular a decrease in methane emission. A fistulated Holstein cow of 650 kg body weight was used as a donor of rumen fluid. Organic acids (aspartic acid, fumaric acid, lactic acid, malic acid, and succinic acid) known to be propionate enhancers were added to an in vitro fermentation system and incubated with rumen fluid. The microbial population, including bacteria, protozoa, and fungi, were enumerated, and gas production, including methane and fermentation characteristics, were observed in vitro. Organic acids appeared to affect the rumen protozoan community. The rumen protozoal popuation decreased with the addition of aspartic acid, fumaric acid, lactic acid, and malic acid. In particular, the methane emission was reduced by addition of lactic acid. The concentration of propionate with all organic acids that were added appeared to be higher than that of the control at 12 h incubation. Addition of organic acids significantly affected rumen bacteria and microbial growth. The bacteria in added fumaric acid and malic acid was significantly higher (p<0.05) and protozoa was significantly lower (p<0.05) than that of the control. Microbial growth with the addition of organic acids was greater than the control after 48 h incubation.

Production of Vinegar using Rubus coreanus and Its Antioxidant Activities (복분자를 이용한 식초의 제조 및 그의 항산화 효과)

  • Hong, Sung-Min;Kang, Min-Jeong;Lee, Ju-Hye;Jeong, Ji-Hye;Kwon, Seung-Hyek;Seo, Kwon-Il
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.594-603
    • /
    • 2012
  • This study developed a high-utility type of vinegar from Rubus coreanus by optimizing its fermentation conditions. In the alcohol fermentation process, the optimal conditions for the maximization of the alcohol contents were an initial sugar concentration of 15 $^{\circ}Brix$, a temperature of $30^{\circ}C$ and 4 days. The optimal conditions for the acetic acid fermentation were 9 days of fermentation at $30^{\circ}C$ and 200 rpm, with 6% alcohol and 2% initial acidity. The sucrose, fructose, and glucose contents were 952.90, 491.01, and 386.62 mg%, respectively. The free organic acids were acetic, malic, succinic, malonic, oxalic, and lactic acids. The total free amino acid content was 104.33 ${\mu}g/mL$, with alanine, glutamic acid, ${\gamma}$-amino-N-butyric acid, and o-phospho-ethanolamine as the major amino acids. The K, Na, and Mg contents were 1,686.10, 172.50, and 69.33 ppm, respectively. The total phenolic and anthocyanin contents were 25.19 and 80.71 mg/100 mL, respectively. The DPPH- and $ABTS^{.+}$ radical scavenging activities were approximately 65 and 94%, respectively. Moreover, the vinegar's ${\beta}$-carotene bleaching activity and reducing power showed that it had strong anti-oxidant properties. These results show that Rubus coreanus vinegar has anti-oxidant properties and may be used as functional food.

Determination of Main Factors Affecting the Electrodialysis of Succinate by Using Design of Experiment Method (실험계획법을 이용한 숙신산염 탈염의 주요 공정변수 결정)

  • Shin, Seunghan;Chang, Eugene;Lee, Do-Hoon;Kim, Sangyong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.179-184
    • /
    • 2008
  • The separation and purification of succinate are necessary for the succinic acid production by a fermentation process. Among the purification processes, desalination of succinate is inevitable. In this work, electrodialysis was selected as a desalination method and its operating parameters affecting the degree of desalination and energy consumption were examined. Commercialized electrodialysis apparatus was used in this work and its optimum operating parameters were determined by using design of experiment (DOE) method. Voltage, concentration of succinate, and pH were selected as main parameters. Among them, voltage seemed to be the most important one. The final conversion of succinate to succinic acid was calculated when the operating parameters were optimized. Finally, the effect of impurities, such as corn steep oil, yeast extract, and dextrose on the electrodialysis efficiency was also studied.

Isolation and Characterization of Serratia sp. JM Producing Chitinase (Chitinase를 생성하는 Serratia sp. JM의 분리 및 특성)

  • 차진명;진상기고한철이인화
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.92-98
    • /
    • 1996
  • A chitinase-producing bacterium was isolated from seashore mud around Beobseongpo in Chunnam province by selective enrichment culture, and among it, one isolate which was the best in producing of chitinase was selected. Nutrient or MacConkey medium was confirmed with secreting of prodigiosin pigment by Serratia sp. JM, and it was performed by the production of clear zone on medium containing chitin. Serratia sp. JM was almost same compared with Serratia marcescens ATCC 27117 in respect of its morphological, physiological and biochemical characteristics except succinic, urea and pyruvic acid. Serratia sp. JM was resistant to tetracycline but was not resistant to kanamycin and chloramphenicol. The optimal temperature and pH for the production of chitinase from Serratia sp. JM were $30^{\circ}C$ and 7.5, respectively. Production of chitinase and pH in the medium increased until the cultivation of 120 hours, but after 120 hours, they were decreased due to the acetic acid accumulated from degradation of chitin by Serratia sp. JM.

  • PDF

Enhancing Microbial Resilience: The Role of Adaptive Laboratory Evolution in Industrial Biotechnology (미생물 내성 강화: 산업 생명공학에서의 적응 실험실 진화의 역할)

  • Theavita Chatarina Mariyes;Eun-Jae Ju;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.34 no.10
    • /
    • pp.730-743
    • /
    • 2024
  • Industrial biotechnology leverages microorganisms such as Saccharomyces cerevisiae and Escherichia coli for sustainable production of chemicals, fuels, and pharmaceuticals. However, despite their potential, microbial production faces challenges due to environmental stressors, which impede efficiency and economic feasibility. While traditional genetic engineering offers solutions, it often fails to create robust strains for industrial conditions. Adaptive laboratory evolution (ALE) has emerged as a potent strategy to enhance microbial resilience by mimicking natural selection under controlled conditions. ALE has successfully improved tolerance to stressors such as toxic compounds, extreme pH, and high temperatures in various microorganisms. In yeasts, ALE has enhanced acetic acid and furfural tolerance, which is crucial for bioethanol production. Similarly, in E. coli, ALE has increased resistance to acid stress and improved production of succinic acid and L-serine. In lactic acid bacteria, ALE has boosted lactic acid production and strain stability under thermal and freeze-thaw stresses, benefiting both industrial and probiotic applications. Corynebacterium glutamicum has also shown significant improvements in growth rates, stress tolerance, and production capabilities through ALE. These advancements underline ALE's role in optimizing microbial strains for diverse industrial processes, making it a powerful tool in microbial biotechnology. This review highlights the latest applications and methods of ALE, emphasizing its impact on industrial microorganisms and potential for future research in sustainable bioproduction.

Zymological characteristics of Cheju folk wine made of foxtail millet (제주토속 좁쌀약주의 약조특성)

  • Koh, Jeong-Sam;Yang, Young-Taek;Ko, Young-Hwan;Kang, Yeung-Joo
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.277-283
    • /
    • 1993
  • In order to brew foxtail millet wine, a folk wine of Cheju, properties of raw materials, optimum brewing conditions were inveatigated. Carbohydrate and crude fat content of glutinuous foxtail millet are 71.27% and 3.47%, respectively. Since the ratio of water to steamed millet and ethanol concentration of wine showed negative correlation, less than 250% water had to added to steamed millet to maintain ethanol concentration in wine above 13%, Sugar consumption and ethanol production increased rapidly for the first 2 days, and main fermentation was done in 4 days. Ethanol concentrations were $13.0{\sim}13.4%$ when foxtail millet was used, and they were $14.0{\sim}14.3%$ for the mixture substrates of 90% millet and 10% rice or barley. Organic acids in millet wine were lactic acid, malic acid and succinic acid. The residual carbohydrates after fermentation were mainly xylose and oligosaccharides. A trace of methanol was detected in millet wine. The content of fusel oil was low, while the concnetration of organic acids was high. Optimum conditions for millet wine-making were as follows. Glutinuous foxtail millet with 10% rice as fermentation source need to be soaked in water and steamed for enough time. Water was added to steamed millet with the ratio of 2 : 1. The resulting mixture was stmnultaneously saccharified and fermented by Aspergillus orzae and Saccharomyces cerevisiae IAM 4274 at $20^{\circ}C$ for a week. Millet wine was prepared after filtering fermented broth while pressing for a week.

  • PDF

Analysis of quality characteristics of sugar-soaked raspberry according to storage period (저장 기간에 따른 산딸기 당 침지액의 품질특성 분석)

  • Choi, Seok-Yong;Gu, Suyeon;Ryu, Chung-Ho;Kim, Hyun-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.7-15
    • /
    • 2022
  • Volatile and non-volatile metabolite profiles of sugar-immersed raspberry liquid during different storage periods were analyzed and comparative analysis with their general characteristics, antioxidant activity, and sensory quality was evaluated to better understand the effect of the storage period on the quality of ugar-immersed raspberry liquid. During storage, a browning reaction occurred, resulting in a change in color and the production of volatile compounds. At the beginning of storage, sucrose was completely decomposed into fructose and glucose, and the sweetness was rapidly reduced, but the increase in succinic acid increased the sour taste. Most volatile compounds increased with an increase of the storage period, and especially, the contents of citronellol, octanoic acid, and hexanoic acid, which are known as antioxidants, showed the highest content in 10 day-sample, showing the highest antioxidant activity at this time. Although a further study on bacterial profiles and browning reaction during the storage will be needed, the results of this study showed that the quality of sugar-soaked raspberry extract was significantly affected by the storage period and can be used as basic data for commercialization of ugar-immersed raspberry liquid.