• 제목/요약/키워드: Successive approximations technique

검색결과 7건 처리시간 0.025초

부피와 길이가 같은 변단면 기둥의 좌굴하중 (Buckling Load of Columns with Same Volume and Length but Variable Cross-section along the Length)

  • 이홍규;유종호;이승원;김선희;원용석;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.77-85
    • /
    • 2015
  • In this paper, we present the result of investigations pertaining to the elastic buckling of simply supported columns with various cross-sectional dimensions but the same length and volume. In the investigations the accuracy of the analysis methods is studied and it was found that the result obtained by the successive approximations technique is the most accurate. In addition, the elastic buckling loads of columns with variable cross-section dimensions are obtained by the theoretical and numerical methods. From the results, it was found that the buckling loads obtained by the numerical methods are close to the buckling loads obtained by the successive approximations technique for the practical standpoints. Moreover, the buckling load of column with convexity in its middle is the highest while the buckling load of the tapered column is the lowest as expected.

부석사 무량수전 배흘림 목재 기둥의 좌굴강도 (Buckling Strength of Wooden Column with Entasis at the Muryangsugeon in Buseoksa-Temple)

  • 윤순종;김희수;유형주;한민혁;김진경;지해인
    • 복합신소재구조학회 논문집
    • /
    • 제6권1호
    • /
    • pp.6-13
    • /
    • 2015
  • In this paper we present the result of investigations pertaining to the buckling strength of Zelkova Serrata (Elm-like) tree column with entasis at the Muryangsujeon in Buseoksa-Temple, Korea. Wooden columns with entasis had been used in the construction of ancient architectural buildings in Korea. It was not known why did they design columns with entasis of the buildings. It is just presumed that the reason may be the compensation of optical illusion, aesthetics, and/or structural safety. The question is not answered even today and it may not be possible to answer clearly and easily. In the paper, the buckling analyses are conducted on both of the wooden column with entasis and the prismatic wooden column by the successive approximations technique and the finite element methods, respectively. The results of analyses are compared and discussed.

The influence of different support movements and heights of piers on the dynamic behavior of bridges -Part II: earthquake acting along the bridge axis

  • Raftoyiannis, I.G.;Konstantakopoulos, T.G.;Michaltsos, G.T.
    • Interaction and multiscale mechanics
    • /
    • 제3권1호
    • /
    • pp.39-54
    • /
    • 2010
  • In this paper, a simple approach is presented for studying the dynamic response of multi-span steel bridges supported by pylons of different heights, subjected to earthquake motions acting along the axis of the bridge with spatial variations. The analysis is carried out using the modal analysis technique, while the solution of the integral-differential equations derived is obtained using the successive approximations technique. It was found that the height of piers and the quality of the foundation soil can affect significantly the dynamical behavior of the bridges studied. Illustrative examples are presented to highlight the points of concern and useful conclusions are gathered.

양단고정 Prime과 Quadratic 포물선 아치의 면내좌굴에 관한 연구 (In-Plane Buckling of Prime and Quadratic Parabolic Arches with Fixed Ends)

  • 이병구;김종만
    • 한국농공학회지
    • /
    • 제29권3호
    • /
    • pp.153-162
    • /
    • 1987
  • A numerical procedure for the analysis of slender arch buckling problems for uniform dead weight is presented in this paper. Such loading changes in the arch profile. The problem is nonlinear. The numerical procedure is limited to an inextensible analysis and to elastic behavior. Based upon a numerical integration technique developed by Newmark for straight beams, a large deflection bending analysis is combined with small deflection buckling routines to formulate the numerical procedure. The numerical procedure is composed of a combination of the numerical integration and successive approximations procedure. The results obtained in this study are as follows : 1.The critical loads obtained in this study coincide with the results by Austin so that the algorithm developed in this study is verified. 2.The numerical results are converged with good precision when the half arch is divided into 10 segments in both Prime and Quadratic section. 3.The critical loads are decreased as the ratios of rise versus span are increased. 4.The critical loads are increased as the moments of inertia at the ends are increased. 5.The critical loads of Prime section are larger than that of Quadratic section under the same profile conditions.

  • PDF

부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화 (Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring)

  • 김태봉;서상구;김창운
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF

종방향 진동해석에 비구조적 유한요소 적용 (Application of the Unstructured Finite Element to Longitudinal Vibration Analysis)

  • 김치경
    • 한국전산구조공학회논문집
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2006
  • 본 연구는 파 해석에 있어서 공간-시간 분할 개념을 도입하여 켈러킨 방법으로 해석하였다. 공간-시간 유한요소법은 오직 공간에 대해서만 분할하는 일반적인 유한요소법보다 간편하다. 비교적 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 방법을 제시하며 가중잔차법이 공간-시간 영역에서 유한요소 정식화에 이용되었다. 큰 시간 간격으로 인하여 문제의 해가 발산하는 경우가 동적인 문제에서 흔히 발생한다. 이러한 결점을 보완한 사각형 공간-시간 요소를 취하여 문제를 해석하고 해의 안정에 대해 기술하였다. 다수의 수치해석을 통하여 이 방법이 효과적 임을 알 수 있었다.

2차원 동적 진동문제의 공간-시간 유한요소법 적용 (An Application of Space and Time Finite Element Method for Two-Dimensional Transient Vibration)

  • 김치경
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.143-149
    • /
    • 2006
  • 본 논문은 2차원 동적 진동문제를 공간-시간 유한요소법으로 해석하고 있다. 공간-시간 유한요소법은 공간만 분할하는 재래식 유한요소해석에 비해 보다 해를 빠르고 쉽게 얻을 수 있다. 상대적으로 큰 시간간격에 대해서 공간과 시간을 동시에 분할하는 공간-시간 유한요소 근사법을 제시한다. 가중잔차법으로 공간-시간 영역에 대해 유한요소법을 정식화하였으며 선형 사변형 공간-시간 유한요소를 선택하여 해의 안정성에 관하여 언급하였다. 일반적 동적문제에서는 상대적인 큰 시간간격으로 인하여 해의 불안정을 야기 시키고 있으나 본 연구에서는 수치의 안정성을 보여주고 있다. 비구조 공간-시간 유한요소법은 재래식 수치해석에서 흔히 발생하는 해의 불안정성에 대한 결점을 보완함은 물론 효과적인 계산방법을 지니고 있다. 이 방법의 효율성을 위해 수치예제들을 제시하였다.