• Title/Summary/Keyword: Successive Cracking Method

Search Result 7, Processing Time 0.023 seconds

Residual Stress Measurement for Circular Disk Using Fraction Mechanics Approach (파괴역학을 이용한 원판형 부재의 잔류응력 측정)

  • 강기주;최성렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1218-1226
    • /
    • 1993
  • A method, so called 'successive cracking method,' for measuring residual stresses in a circular disk is proposed. In this method residual stresses are evaluated using a fracture mechanics approach, that is, the strains measured at a point on a edge of the disk as a crack is introduced and extended from the edge are used to deduce the residual stress distribution which existed in the uncracked disk. Through finite element analysis and comparative experiments with generally used sectioning method, the successive cracking method is shown to be valid, simple and effective to measure 2-dimensional residual stress distribution in a circular disk.

Crack-Free Fabrications of Yttria-Stabilized Zirconia Films Using Successive-Ionic-Layer-Adsorption-and-Reaction and Air-Spray Plus Method

  • Taeyoon Kim;Sangmoon Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.79-84
    • /
    • 2024
  • Thin films of yttria-stabilized zirconia (YSZ) nanoparticles were prepared using a low-temperature deposition and crystallization process involving successive ionic layer adsorption and reaction (SILAR) or SILAR-Air spray Plus (SILAR-A+) methods, coupled with hydrothermal (175 ℃) and furnace (500 ℃) post-annealing. The annealed YSZ films resulted in crystalline products, and their phases of monoclinic, tetragonal, and cubic were categorized through X-ray diffraction analysis. The morphologies of the as-prepared films, fabricated by SILAR and SILAR-A+ processes, including hydrothermal dehydration and annealing, were characterized by the degree of surface cracking using scanning electron microscopy images. Additionally, the thicknesses of the YSZ thin films were compared by removing diffusion layers such as spectator anions and water accumulated during the air spray plus process. Crack-free YSZ thin films were successfully fabricated on glass substrates using the SILAR-A+ method, followed by hydrothermal and furnace annealing, making them suitable for application in solid oxide fuel cells.

Small Crack Detection in Bolt Threads by Predictive Deconvolution (예측디콘볼루션에 의한 볼트 나삿니의 미세 균열 검출)

  • Suh, Dong-Man;Kim, Whan-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.5-9
    • /
    • 1997
  • If small cracks in stud bolts are not detected early enough, they grow rapidly and cause total fracture. It is difficult to detect, prior to failure, flaws such as stress-corrosion cracking in thread roots and corrosion wastages using conventional ultrasonic testing methods during inservice inspection. This study show a method of detecting a small crack by digital signal processing. When ultrasonic beams travels into threads in parallel way, the echoes from each successive threads has almost the same intervals between any two signals. We can estimate the next thread signal based on previous thread signal by the predictive distance. The optimized operator is used to remove the predicted successive thread signals so that a small crack signal can be detected.

  • PDF

Drawing Strain Distribution Model for the Two-Pass Drawing Process (2단 튜브인발 공정시 인발변형률 배분모델 재발)

  • Lee D. H;Chung U. C;Moon Y. H
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.671-677
    • /
    • 2004
  • For the large reduction in tube cross section, the tube drawing process is usually performed by two successive passes, so called first drawing and second drawing. In multi-pass drawing process, the reduction balance is important to prevent drawing cracks. Therefore in this study, the model for uniform reduction distribution in two-pass drawing process has been developed on the basis of cross sectional variation of drawn tube. For the given product geometry the model provides optimal diameter and thickness that can evenly distribute drawing reductions. The capability of model is well confirmed by finite element analysis of tube drawing process. Criteria curves at various limit strains to determine whether the drawn tube would fail during drawing process are also proposed by using newly developed model.

Assessing Compressive Failure Characteristics of Hybrid Fiber Reinforced Cementitious Composites by Acoustic Emission (AE기법에 의한 하이브리드 섬유보강 시멘트복합체의 압축파괴특성 평가)

  • Kim, Sun-Woo;Ji, Sang-Kyu;Jeon, Su-Man;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.229-232
    • /
    • 2006
  • The HPFRCCs show that the multiple crack propagation, high tensile strength and ductility due to the interfacial bonding of the fibers to the cement matrix. Moreover, performance of cement composites varies according to type and weight contents of reinforcing fiber. and HPFRCCs with hybrid fiber have better performance than HPFRCCs with single fiber in damage tolerance. Total four cylindrical specimens were tested, and the main variables were the type and weight contents of fiber, which was polyvinylalchol (PVA), polyethylene (PE). In order to clarify effect of hybrid types on the characteristics of fracture and damage process in cement composites, AE method was performed to detect micro-cracking in HPFRCCs under cyclic compression. Loading conditions of the uniaxial compression test were monotonic and cyclic loading. And from AE parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cvcle.

  • PDF

A Study on Preparation and Reactivity of Zinc-based Sorbents for H2S Removal (H2S제거를 위한 아연계 탈황제 제조 및 반응특성 연구)

  • Lee, Chang Min;Yoon, Yea Il;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.183-189
    • /
    • 1999
  • Zinc-based sorbents for $H_2S$ removal were prepared. The reactivity of sorbents was investigated by the successive cycles of sulfidation-regeneration at $650^{\circ}C$ in a fixed bed reactor. The desulfurization sorbents were prepared with granulation method to produce a spherical pellet with good attrition resistance. The fresh and reacted sorbents were characterized by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) and the characteristics of sorbents on calcination conditons were analysed by Mercury Porosimetery and BET. The reactivity of sorbents decreased as the number of sulfidation-regeneration cycle increased. It is due to the zinc loss and the increase of the diffusion resistance by sintering, cracking and spalling of sorbents at the high temperature.

  • PDF

Direct Strength Evaluation of the CVD SiC Coating of TRISO Coated Fuel Particle with Micro Hemi Spherical Shell Configuration (마이크로 반구 쉘 형상의 화학증착 탄화규소 TRISO 코팅층의 파괴강도 직접평가)

  • Lee, Hyeon-Keun;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.368-374
    • /
    • 2007
  • CVD-SiC coating has been introduced as a protective layer in TRISO nuclear fuel particle of high temperature gas cooled reactor (HTGR) due to its excellent mechanical stability at high temperature. In order to prevent the failure of the TRISO particles, it is important to evaluate the fracture strength of the SiC coating layer. It is needed to develop a new simple characterization technique to evaluate the mechanical properties of the coating layer as a pre-irradiation step. In present work, direct strength measurement method with the specimen of hem i-spherical shell configuration was suggested. The indentation experiment on a hemisphere shell with a plate indenter was conducted. The fracture strength of the coating layer is related with the critical load for radial cracking of the shell. The finite element analysis was used to drive the semi-empirical equation for the strength measurement. The SiC hemispherical shells were successfully recovered from the section-grinding of TRISO coated particle and successive heat treatment in air. The strength of CVD-SiC coating layer was evaluated from the experimentally measured critical load during the indentation on SiC hemisphere shell. Weibull diagram of fracture strength was also constructed. This study suggested a new strength equation and experimental method to measure the fracture strength of CVD-SiC coating of TRISO coated fuel particles.