• 제목/요약/키워드: Success and Failure Prediction

검색결과 22건 처리시간 0.029초

머신러닝 기반 외식업 프랜차이즈 가맹점 성패 예측 (Prediction of Food Franchise Success and Failure Based on Machine Learning)

  • 안예린;유성민;이현희;박민서
    • 문화기술의 융합
    • /
    • 제8권4호
    • /
    • pp.347-353
    • /
    • 2022
  • 외식업은 소비자의 수요가 많고 진입장벽이 낮아 창업이 활발하게 일어난다. 하지만 외식업은 폐업률이 높고, 프랜차이즈의 경우 동일 브랜드 내에서도 매출 편차가 크게 나타난다. 따라서 외식업 프랜차이즈의 폐업을 방지하기 위한 연구가 필요하다. 이를 위해, 본 연구에서는 프랜차이즈 가맹점 매출에 영향을 미치는 요인들을 살펴보고, 도출된 요인들에 머신러닝 기법을 활용하여 프랜차이즈의 성패를 예측하고자 한다. 강남구 프랜차이즈 매장의 PoS(Point of Sale) 데이터와 공공데이터를 활용하여 가맹점 매출에 영향을 미치는 여러 요인들을 추출하고, VIF(Variance Inflation Factor)를 활용하여 다중공산성을 제거하여 타당성 있는 변수 선택을 진행한 뒤, 머신러닝 기법 중 분류모델을 활용하여 프랜차이즈 매장의 성패 예측을 진행한다. 이를 통해 최고 정확도 0.92를 가진 프랜차이즈 성패 예측 모델을 제안한다.

머신러닝 기반 건강컨설팅 성공여부 예측모형 개발 (Developing a Model for Predicting Success of Machine Learning based Health Consulting)

  • 이상호;송태민
    • 한국IT서비스학회지
    • /
    • 제17권1호
    • /
    • pp.91-103
    • /
    • 2018
  • This study developed a prediction model using machine learning technology and predicted the success of health consulting by using life log data generated through u-Health service. The model index of the Random Forest model was the highest using. As a result of analyzing the Random Forest model, blood pressure was the most influential factor in the success or failure of metabolic syndrome in the subjects of u-Health service, followed by triglycerides, body weight, blood sugar, high cholesterol, and medication appear. muscular, basal metabolic rate and high-density lipoprotein cholesterol were increased; waist circumference, Blood sugar and triglyceride were decreased. Further, biometrics and health behavior improved. After nine months of u-health services, the number of subjects with four or more factors for metabolic syndrome decreased by 28.6%; 3.7% of regular drinkers stopped drinking; 23.2% of subjects who rarely exercised began to exercise twice a week or more; and 20.0% of smokers stopped smoking. If the predictive model developed in this study is linked with CBR, it can be used as case study data of CBR with high probability of success in the prediction model to improve the compliance of the subject and to improve the qualitative effect of counseling for the improvement of the metabolic syndrome.

멀티미디어 및 언어적 특성을 활용한 크라우드펀딩 캠페인의 성공 여부 예측 (Predicting Success of Crowdfunding Campaigns using Multimedia and Linguistic Features)

  • 이강희;이승훈;김현철
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.281-288
    • /
    • 2018
  • Crowdfunding has seen an enormous rise, becoming a new alternative funding source for emerging startup companies in recent years. Despite the huge success of crowdfunding, it has been reported that only around 40% of crowdfunding campaigns successfully raise the desired goal amount. The purpose of this study is to investigate key factors influencing successful fundraising on crowdfunding platforms. To this end, we mainly focus on contents of project campaigns, particularly their linguistic cues as well as multiple features extracted from project information and multimedia contents. We reveal which of these features are useful for predicting success of crowdfunding campaigns, and then build a predictive model based on those selected features. Our experimental results demonstrate that the built model predicts the success or failure of a crowdfunding campaign with 86.15% accuracy.

뇌과학 기반의 디즈니 애니메이션 흥행 예측 AI 모형 개발 연구 (A Study on Development of Disney Animation's Box-office Prediction AI Model Based on Brain Science)

  • 이종은;양은영
    • 디지털융복합연구
    • /
    • 제16권9호
    • /
    • pp.405-412
    • /
    • 2018
  • 영화 흥행의 예측이 필요한 시점은 영화 제작 전에 시나리오에 대한 투자를 결정하는 시점이다. 이런 요구에 따라 최근 인공지능 기반 시나리오 분석 서비스가 출시되었으나, 아직 그 알고리즘이 완벽하지는 않다. 본 연구의 목적은 인간의 뇌 작동 기작에 기반 하여, 영화 시나리오 흥행 예측 모형을 제시하는 것이다. 이를 위해 베버의 자극 반응 법칙과 뇌의 자극 기작 이론 등을 적용하여, 디즈니 애니메이션 흥행작의 시각, 청각, 인지적 자극의 타임 스펙트럼 패턴 도출을 시도한 결과는 다음과 같다. 첫째, 흥행작에서 나타난 뇌 자극의 빈도가 비 흥행작보다 약 1.79배가 많았다. 둘째로, 흥행작에서는 지각 자극 코드들이 타임 스펙트럼 상에 고른 분포를 보인 반면에 비흥행작에서는 집중 분포를 보였다. 셋째로, 흥행작에서는 인지적 부담이 큰 인지적 자극은 주로 단독적으로 등장한 반면에, 인지적 부담이 적은 시각적, 청각적 자극은 두 가지가 동시에 등장하였다.

공 던지기 로봇의 정책 예측 심층 강화학습 (Deep Reinforcement Learning of Ball Throwing Robot's Policy Prediction)

  • 강영균;이철수
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.398-403
    • /
    • 2020
  • Robot's throwing control is difficult to accurately calculate because of air resistance and rotational inertia, etc. This complexity can be solved by using machine learning. Reinforcement learning using reward function puts limit on adapting to new environment for robots. Therefore, this paper applied deep reinforcement learning using neural network without reward function. Throwing is evaluated as a success or failure. AI network learns by taking the target position and control policy as input and yielding the evaluation as output. Then, the task is carried out by predicting the success probability according to the target location and control policy and searching the policy with the highest probability. Repeating this task can result in performance improvements as data accumulates. And this model can even predict tasks that were not previously attempted which means it is an universally applicable learning model for any new environment. According to the data results from 520 experiments, this learning model guarantees 75% success rate.

Prediction of lifespan and assessing risk factors of large-sample implant prostheses: a multicenter study

  • Jeong Hoon Kim;Joon-Ho Yoon;Hae-In Jeon;Dong-Wook Kim;Young-Bum Park;Namsik Oh
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권3호
    • /
    • pp.151-162
    • /
    • 2024
  • PURPOSE. This study aimed to analyze factors influencing the success and failure of implant prostheses and to estimate the lifespan of prostheses using standardized evaluation criteria. An online survey platform was utilized to efficiently gather large samples from multiple institutions. MATERIALS AND METHODS. During the one-year period, patients visiting 16 institutions were assessed using standardized evaluation criteria (KAP criteria). Data from these institutions were collected through an online platform, and various statistical analyses were conducted. Risk factors were assessed using both the Cox proportional hazard model and Cox regression analysis. Survival analysis was conducted using Kaplan-Meier analysis and nomogram, and lifespan prediction was performed using principal component analysis. RESULTS. The number of patients involved in this study was 485, with a total of 841 prostheses evaluated. The median survival was estimated to be 16 years with a 95% confidence interval. Factors found to be significantly associated with implant prosthesis failure, characterized by higher hazard ratios, included the 'type of clinic', 'type of antagonist', and 'plaque index'. The lifespan of implant prostheses that did not fail was estimated to exceed the projected lifespan by approximately 1.34 years. CONCLUSION. To ensure the success of implant prostheses, maintaining good oral hygiene is crucial. The estimated lifespan of implant prostheses is often underestimated by approximately 1.34 years. Furthermore, standardized form, online platform, and visualization tool, such as nomogram, can be effectively utilized in future follow-up studies.

일반병동 입원환자의 어려운 기도 예측 여부에 따른 기관 내 삽관의 결과 분석 (Outcome Analysis of Endotracheal Intubation for General Ward Patients with and without Predicted Difficulty)

  • 안지영;최혜란
    • 중환자간호학회지
    • /
    • 제7권2호
    • /
    • pp.34-44
    • /
    • 2014
  • Purpose: The purpose of this study was to determine the factors related to airway failure during endotracheal intubation among patients with and without predicted airway difficulty. Methods: Medical records were examined retrospectively. 329 patients who were admitted to the general ward and underwent endotracheal intubation were included. The incidence of airway failure in the two groups was investigated. Results: The group predicted to have airway difficulty consisted of 79 patients (24.0%) and the group without airway difficulty, 250 (76.0%). The number of cases of airway failure was 50 (15.2%). The factors that were associated with airway failure in the group with predicted airway difficulty were the jaw relaxation score, Cormack-Lehane score, and the device of the first endotracheal intubation attempt. The factors that were associated with the airway failure in the group predicted not to have airway difficulty were the induction agent, jaw relaxation score, Cormack-Lehane score, level of training of the personnel with the first endotracheal intubation success, and the device of the first endotracheal intubation attempt. Conclusion: The prediction of airway difficulty during endotracheal intubation was not effective; however, it was meaningful from the perspective of patient safety.

  • PDF

Computed tomographic assessment of retrograde urohydropropulsion in male dogs and prediction of stone composition using Hounsfield unit in dogs and cats

  • Bruwier, Aurelie;Godart, Benjamin;Gatel, Laure;Leperlier, Dimitri;Bedu, Anne-Sophie
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.65.1-65.10
    • /
    • 2022
  • Background: Persistent uroliths after a cystotomy in dogs are a common cause of surgical failure. Objectives: This study examined the following: the success rate of retrograde urohydropropulsion in male dogs using non-enhanced computed tomography (CT), whether the CT mean beam attenuation values in Hounsfield Units (mHU) measured in vivo could predict the urolithiasis composition and whether the selected reconstruction kernel may influence the measured mHU. Methods: All dogs and cats that presented with lower urinary tract uroliths and had a non-enhanced CT preceding surgery were included. In male dogs, CT was performed after retrograde urohydropropulsion to detect the remaining urethral calculi. The percentage and location of persistent calculi were recorded. The images were reconstructed using three kernels, from smooth to ultrasharp, and the calculi mHU were measured. Results: Sixty-five patients were included in the study. The success rate of retrograde urohydropropulsion in the 45 male dogs was 55.6% and 86.7% at the first and second attempts, respectively. The predominant components of the calculi were cystine (20), struvite (15), calcium oxalate (8), and urate (7). The convolution kernel influenced the mHU values (p < 0.05). The difference in mHU regarding the calculus composition was better assessed using the smoother kernel. A mHU greater than 1,000 HU was predictive of calcium oxalate calculi. Conclusions: Non-enhanced CT is useful for controlling the success of retrograde urohydropropulsion. The mHU could allow a prediction of the calculus composition, particularly for calcium oxalate, which may help determine the therapeutic strategy.

텍스트 마이닝을 활용한 영화흥행 예측 연구 (Study on prediction for a film success using text mining)

  • 이상훈;조장식;강창완;최승배
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1259-1269
    • /
    • 2015
  • 최근 빅 데이터는 학계에서 키워드로 자리매김을 하고 있다. 빅 데이터의 유용성은 학계뿐만 아니라 정부, 지자체 그리고 기업체까지 파급되고 있고, 빅 데이터 속에서 유용한 정보를 도출해 내기 위해 노력하고 있다. 본 연구에서는 영화에 대한 리뷰를 가지고 텍스트 마이닝 (text mining)을 이용한 빅 데이터 분석을 수행한다. 본 연구의 목적은 포털 사이트 'D'사와 영화진흥위원회의 영화에 대한 리뷰 데이터, 그리고 고객들의 평점평균 (score)과 스크린 수 (screen number)를 설명변수로 사용하고, 영화 흥행 여부를 종속변수로 하여 로지스틱 회귀분석을 통한 영화 흥행 예측 모형을 제안하는 것이다. 분석결과, 본 연구에서 제안한 예측모형의 정분류율은 95.74%로 얻어졌다.

초기 시청시간 패턴 분석을 통한 대흥행 드라마 예측 (Prediction of a hit drama with a pattern analysis on early viewing ratings)

  • 남기환;성노윤
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.33-49
    • /
    • 2018
  • TV 드라마는 타 장르에 비해 시청률과 채널 홍보 효과가 매우 크며, 한류를 통해 산업적 효과와 문화적 영향력을 확인시켜줬다. 따라서, 이와 같은 드라마의 흥행 여부를 예측하는 일은 방송 관련 산업에서 매우 중요한 부분임은 주지의 사실이다. 이를 위해서 본 연구에서는 2003년부터 2012년까지 10년간, 지상파 채널을 통해 방송된, 총 280개의 TV 미니시리즈 드라마를 분석하였다. 이들 드라마 중 평균 시청률 상위 45개, 하위 시청률 45개를 선정하여 흥행 드라마의 시청시간 분포 (5%~100%, 11-Step) 모형을 만들었다. 이들 기준 모형과 신규 드라마의 시청시간 분포와의 이격 거리를 Euclidean/Correlation으로 측정한 유사도(Similarity)를 통해, 시청자의 초기(1~5회) 시청시간 분포로 신규 드라마의 성패 여부를 예측하는 모델을 만들었다. 또한 총 방송 시간 중 70% 이상 시청한 시청자를 열혈 시청층(이하 열혈층) 으로 분류하고, 상위/하위 드라마의 평균값과 비교하여, 신규 드라마의 흥행여부를 판별할 수 있도록 설계하였다. 연구 결과 드라마의 초반 시청자 충성도(시청시간)는 드라마의 대흥행 여부를 예측하는데 중요한 요소임을 밝혔으며, 최대 75.47%의 확률로 대흥행 드라마의 탄생을 예측할 수 있었다.