외식업은 소비자의 수요가 많고 진입장벽이 낮아 창업이 활발하게 일어난다. 하지만 외식업은 폐업률이 높고, 프랜차이즈의 경우 동일 브랜드 내에서도 매출 편차가 크게 나타난다. 따라서 외식업 프랜차이즈의 폐업을 방지하기 위한 연구가 필요하다. 이를 위해, 본 연구에서는 프랜차이즈 가맹점 매출에 영향을 미치는 요인들을 살펴보고, 도출된 요인들에 머신러닝 기법을 활용하여 프랜차이즈의 성패를 예측하고자 한다. 강남구 프랜차이즈 매장의 PoS(Point of Sale) 데이터와 공공데이터를 활용하여 가맹점 매출에 영향을 미치는 여러 요인들을 추출하고, VIF(Variance Inflation Factor)를 활용하여 다중공산성을 제거하여 타당성 있는 변수 선택을 진행한 뒤, 머신러닝 기법 중 분류모델을 활용하여 프랜차이즈 매장의 성패 예측을 진행한다. 이를 통해 최고 정확도 0.92를 가진 프랜차이즈 성패 예측 모델을 제안한다.
This study developed a prediction model using machine learning technology and predicted the success of health consulting by using life log data generated through u-Health service. The model index of the Random Forest model was the highest using. As a result of analyzing the Random Forest model, blood pressure was the most influential factor in the success or failure of metabolic syndrome in the subjects of u-Health service, followed by triglycerides, body weight, blood sugar, high cholesterol, and medication appear. muscular, basal metabolic rate and high-density lipoprotein cholesterol were increased; waist circumference, Blood sugar and triglyceride were decreased. Further, biometrics and health behavior improved. After nine months of u-health services, the number of subjects with four or more factors for metabolic syndrome decreased by 28.6%; 3.7% of regular drinkers stopped drinking; 23.2% of subjects who rarely exercised began to exercise twice a week or more; and 20.0% of smokers stopped smoking. If the predictive model developed in this study is linked with CBR, it can be used as case study data of CBR with high probability of success in the prediction model to improve the compliance of the subject and to improve the qualitative effect of counseling for the improvement of the metabolic syndrome.
Crowdfunding has seen an enormous rise, becoming a new alternative funding source for emerging startup companies in recent years. Despite the huge success of crowdfunding, it has been reported that only around 40% of crowdfunding campaigns successfully raise the desired goal amount. The purpose of this study is to investigate key factors influencing successful fundraising on crowdfunding platforms. To this end, we mainly focus on contents of project campaigns, particularly their linguistic cues as well as multiple features extracted from project information and multimedia contents. We reveal which of these features are useful for predicting success of crowdfunding campaigns, and then build a predictive model based on those selected features. Our experimental results demonstrate that the built model predicts the success or failure of a crowdfunding campaign with 86.15% accuracy.
영화 흥행의 예측이 필요한 시점은 영화 제작 전에 시나리오에 대한 투자를 결정하는 시점이다. 이런 요구에 따라 최근 인공지능 기반 시나리오 분석 서비스가 출시되었으나, 아직 그 알고리즘이 완벽하지는 않다. 본 연구의 목적은 인간의 뇌 작동 기작에 기반 하여, 영화 시나리오 흥행 예측 모형을 제시하는 것이다. 이를 위해 베버의 자극 반응 법칙과 뇌의 자극 기작 이론 등을 적용하여, 디즈니 애니메이션 흥행작의 시각, 청각, 인지적 자극의 타임 스펙트럼 패턴 도출을 시도한 결과는 다음과 같다. 첫째, 흥행작에서 나타난 뇌 자극의 빈도가 비 흥행작보다 약 1.79배가 많았다. 둘째로, 흥행작에서는 지각 자극 코드들이 타임 스펙트럼 상에 고른 분포를 보인 반면에 비흥행작에서는 집중 분포를 보였다. 셋째로, 흥행작에서는 인지적 부담이 큰 인지적 자극은 주로 단독적으로 등장한 반면에, 인지적 부담이 적은 시각적, 청각적 자극은 두 가지가 동시에 등장하였다.
Robot's throwing control is difficult to accurately calculate because of air resistance and rotational inertia, etc. This complexity can be solved by using machine learning. Reinforcement learning using reward function puts limit on adapting to new environment for robots. Therefore, this paper applied deep reinforcement learning using neural network without reward function. Throwing is evaluated as a success or failure. AI network learns by taking the target position and control policy as input and yielding the evaluation as output. Then, the task is carried out by predicting the success probability according to the target location and control policy and searching the policy with the highest probability. Repeating this task can result in performance improvements as data accumulates. And this model can even predict tasks that were not previously attempted which means it is an universally applicable learning model for any new environment. According to the data results from 520 experiments, this learning model guarantees 75% success rate.
PURPOSE. This study aimed to analyze factors influencing the success and failure of implant prostheses and to estimate the lifespan of prostheses using standardized evaluation criteria. An online survey platform was utilized to efficiently gather large samples from multiple institutions. MATERIALS AND METHODS. During the one-year period, patients visiting 16 institutions were assessed using standardized evaluation criteria (KAP criteria). Data from these institutions were collected through an online platform, and various statistical analyses were conducted. Risk factors were assessed using both the Cox proportional hazard model and Cox regression analysis. Survival analysis was conducted using Kaplan-Meier analysis and nomogram, and lifespan prediction was performed using principal component analysis. RESULTS. The number of patients involved in this study was 485, with a total of 841 prostheses evaluated. The median survival was estimated to be 16 years with a 95% confidence interval. Factors found to be significantly associated with implant prosthesis failure, characterized by higher hazard ratios, included the 'type of clinic', 'type of antagonist', and 'plaque index'. The lifespan of implant prostheses that did not fail was estimated to exceed the projected lifespan by approximately 1.34 years. CONCLUSION. To ensure the success of implant prostheses, maintaining good oral hygiene is crucial. The estimated lifespan of implant prostheses is often underestimated by approximately 1.34 years. Furthermore, standardized form, online platform, and visualization tool, such as nomogram, can be effectively utilized in future follow-up studies.
Purpose: The purpose of this study was to determine the factors related to airway failure during endotracheal intubation among patients with and without predicted airway difficulty. Methods: Medical records were examined retrospectively. 329 patients who were admitted to the general ward and underwent endotracheal intubation were included. The incidence of airway failure in the two groups was investigated. Results: The group predicted to have airway difficulty consisted of 79 patients (24.0%) and the group without airway difficulty, 250 (76.0%). The number of cases of airway failure was 50 (15.2%). The factors that were associated with airway failure in the group with predicted airway difficulty were the jaw relaxation score, Cormack-Lehane score, and the device of the first endotracheal intubation attempt. The factors that were associated with the airway failure in the group predicted not to have airway difficulty were the induction agent, jaw relaxation score, Cormack-Lehane score, level of training of the personnel with the first endotracheal intubation success, and the device of the first endotracheal intubation attempt. Conclusion: The prediction of airway difficulty during endotracheal intubation was not effective; however, it was meaningful from the perspective of patient safety.
Background: Persistent uroliths after a cystotomy in dogs are a common cause of surgical failure. Objectives: This study examined the following: the success rate of retrograde urohydropropulsion in male dogs using non-enhanced computed tomography (CT), whether the CT mean beam attenuation values in Hounsfield Units (mHU) measured in vivo could predict the urolithiasis composition and whether the selected reconstruction kernel may influence the measured mHU. Methods: All dogs and cats that presented with lower urinary tract uroliths and had a non-enhanced CT preceding surgery were included. In male dogs, CT was performed after retrograde urohydropropulsion to detect the remaining urethral calculi. The percentage and location of persistent calculi were recorded. The images were reconstructed using three kernels, from smooth to ultrasharp, and the calculi mHU were measured. Results: Sixty-five patients were included in the study. The success rate of retrograde urohydropropulsion in the 45 male dogs was 55.6% and 86.7% at the first and second attempts, respectively. The predominant components of the calculi were cystine (20), struvite (15), calcium oxalate (8), and urate (7). The convolution kernel influenced the mHU values (p < 0.05). The difference in mHU regarding the calculus composition was better assessed using the smoother kernel. A mHU greater than 1,000 HU was predictive of calcium oxalate calculi. Conclusions: Non-enhanced CT is useful for controlling the success of retrograde urohydropropulsion. The mHU could allow a prediction of the calculus composition, particularly for calcium oxalate, which may help determine the therapeutic strategy.
Journal of the Korean Data and Information Science Society
/
제26권6호
/
pp.1259-1269
/
2015
최근 빅 데이터는 학계에서 키워드로 자리매김을 하고 있다. 빅 데이터의 유용성은 학계뿐만 아니라 정부, 지자체 그리고 기업체까지 파급되고 있고, 빅 데이터 속에서 유용한 정보를 도출해 내기 위해 노력하고 있다. 본 연구에서는 영화에 대한 리뷰를 가지고 텍스트 마이닝 (text mining)을 이용한 빅 데이터 분석을 수행한다. 본 연구의 목적은 포털 사이트 'D'사와 영화진흥위원회의 영화에 대한 리뷰 데이터, 그리고 고객들의 평점평균 (score)과 스크린 수 (screen number)를 설명변수로 사용하고, 영화 흥행 여부를 종속변수로 하여 로지스틱 회귀분석을 통한 영화 흥행 예측 모형을 제안하는 것이다. 분석결과, 본 연구에서 제안한 예측모형의 정분류율은 95.74%로 얻어졌다.
TV 드라마는 타 장르에 비해 시청률과 채널 홍보 효과가 매우 크며, 한류를 통해 산업적 효과와 문화적 영향력을 확인시켜줬다. 따라서, 이와 같은 드라마의 흥행 여부를 예측하는 일은 방송 관련 산업에서 매우 중요한 부분임은 주지의 사실이다. 이를 위해서 본 연구에서는 2003년부터 2012년까지 10년간, 지상파 채널을 통해 방송된, 총 280개의 TV 미니시리즈 드라마를 분석하였다. 이들 드라마 중 평균 시청률 상위 45개, 하위 시청률 45개를 선정하여 흥행 드라마의 시청시간 분포 (5%~100%, 11-Step) 모형을 만들었다. 이들 기준 모형과 신규 드라마의 시청시간 분포와의 이격 거리를 Euclidean/Correlation으로 측정한 유사도(Similarity)를 통해, 시청자의 초기(1~5회) 시청시간 분포로 신규 드라마의 성패 여부를 예측하는 모델을 만들었다. 또한 총 방송 시간 중 70% 이상 시청한 시청자를 열혈 시청층(이하 열혈층) 으로 분류하고, 상위/하위 드라마의 평균값과 비교하여, 신규 드라마의 흥행여부를 판별할 수 있도록 설계하였다. 연구 결과 드라마의 초반 시청자 충성도(시청시간)는 드라마의 대흥행 여부를 예측하는데 중요한 요소임을 밝혔으며, 최대 75.47%의 확률로 대흥행 드라마의 탄생을 예측할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.