• Title/Summary/Keyword: Subway stations

Search Result 391, Processing Time 0.024 seconds

A Study on Improving Subway Crowding Based on Smart Card Data : a Focus on Early Bird Policy Alternative (교통카드 자료를 활용한 지하철 혼잡도 개선 연구 : Early Bird 정책대안을 중심으로)

  • Lee, Sang Jun;Shin, Sung Il
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.125-138
    • /
    • 2020
  • Currently, subway crowding is estimated by observing a specific point at specific hours once or twice every 1 or 2 years. Given the extensive subway network in Seoul Metropolitan Area covering 588 stations, 11 lines and 80 transfer stations as of 2017, implementing crowding mitigation policy may have its limitations due to data uncertainty. A proposal has recently been made to effectively use smart card data, which generates big data on the overall subway traffic related to an estimated 8 million passengers per day. To mitigate subway crowding, this study proposes two viable options based on data related to smart card used in Seoul Metropolitan Area. One is to create a subway passenger pattern model to accurately estimate subway crowding, while the other is to prove effectiveness of early bird policy to distribute subway demand that is concentrated at certain stations and certain time. A subway passenger pattern model was created to estimate the passenger routes based on subway terminal ID at the entrance and exit and data by hours. To that end, we propose assigning passengers at the routes similar to the shortest routes based on an assumption that passengers choose the fastest routes. In the model, passenger flow is simulated every minute, and subway crowding level by station and line at every hour is analyzed while station usage pattern is identified by depending on passenger paths. For early bird policy, highly crowded stations will be categorized based on congestion level extracted from subway passenger pattern model and viability of a policy which transfers certain traveling demands to early commuting hours in those stations will be reviewed. In particular, review will be conducted on the impact of policy implemented at certain stations on other stations and lines from subway network as a whole. Lastly, we proposed that smart card based subway passenger pattern model established through this study used in decision making process to ensure effective implementation of public transport policy.

Determination of Source Contribution Based on Aerosol Number and Mass Concentration in the Seoul Subway Stations (분진의 개수농도 및 질량농도에 입각한 서울시 지하철 역사 내 오염원의 기여도 결정)

  • 최형욱;황인조;김신도;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.17-31
    • /
    • 2004
  • The subway play an important part in serious traffic problems. However, because subway system is a closed environment, many serious air pollution problems occurred in subway stations and injured passenger's health. Therefor, it is a necessary to identify sources and to estimate pollutant sources in order to protect passenger's health and to keep clean subway environment. The purpose of this study was to analyze a air quality in the subway stations and to apply a new receptor methodology for quantitatively estimate of PM10 sources. In this study, the size distributions of particulate matters has been measured by using Aerosizer LD (U.S.A., API, Inc.). It's real time measurement capability of time-of-flight technique offers a significant advantage of user convenience and air pollution management. Also, the mass concentrations of PM 10 has been measured by using mini-vol portable sampler (U.S.A., Airmetrics Co.). The sampling performed in Seoul subway stations during the period of February 2000 and April 2000. The number distribution data used in this study consisted of 26 raw data sets in the Jongno-sam-ga station. Correlation Analysis can be used in subway stations for source separation and identification. Then, number contribution from each source is determined by the particle number balance (PNB). The mass concentration data used in this study consisted of 31 raw data in the 8 different stations. The mass contributions of PM10 sources in the concourse by using PMF/CMB model.

A Comparison Study on Color Planing and Application in interior space of subway station (지하철 정거장 내부공간의 색채계획과 적용에 관한 비교 연구)

  • Woo, Shin-Koo;Cho, Youn-Kyoung
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.51-62
    • /
    • 2007
  • The subway lines have been expanded to solve the traffic problems in Korean cities, so that a big number of people daily use the subway stations. Therefore, subway stations became a kind of public space as well as traffic space. However, the underground space of the stations are essentially different with the aboveground space in terms of environmental and psychological terms. The color planning can be used to reduce the environmental and psychological disadvantages of underground spaces of subway stations. The purpose of this study is to understand the current design methods of subway stations' color planning. To achieve this purpose, this study investigates all reports of 'Color Planning for the Subway' which were used for the construction of subway lines in 6(six) Korean cities. After analyzing the design theories and methods used for the color planning, field studies have been done upon 10 subway lines of 6 cities, to find out the limitations of color planning, the differences between color planning and actual results. The conclusions are as follows : First, the color planning for subway stations does not seem to consider the characteristics of underground space and its psychological effects, such as the depth of station, the lighting source and methods. Second, some critical differences have been found between the color planning and the actual application during construction, due to arbitrary interpretation and limitations of color expression of the construction materials. Third, and therefore, the colors applied in stations do not perform their planned role such as 'variety in the unity', 'symbolic expression of the city and station'.

Distribution of Radon Concentration at Subway Station in Seoul (서울시 지하철역사의 라돈농도분포 조사)

  • Lee Cheol-Min;Kim Yoon-Shin;Kim Jong-Cheol;Jeon Hyung-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.469-480
    • /
    • 2004
  • The radon concentrations were measured to survey distribution of radon concentrations in Seoul subway stations. The radon concentrations in air and water were measured at seventeen subway stations(Mapo, Chungjongno, Sodaemun, Kwanghwamun, Chongno3ga, Ulchiro4ga, Tangdaemun, Sangildong on Line 5;Nowon, Chunggye, Hagye, Kongnung, Taenung, Mokkol, Chunghwa, Sangbong, Myomok on Line 7) using the $RAdtrak^{TM}$ radon gas detector, Pylon AB-5 continuous passive radon detector and liquid scintillation counting method from January to May 1999. The major results obtained from this study were as follows: The long-term mean concentrations of radon were $61.8\;Bq/m^3$ in office, $78.9\;Bq/m^3$ in platform, $38.2\;Bq/m^3$ in concourse and $20.1\;Bq/m^3$ in outdoor, respectively. These levels were less than the action level ($148\;Bq/m^3$) of the U.S. EPA. The highest level of short-term mean concentrations was $116.55\;Bq/m^3$ at Chongno3ga station on the 5th line subway stations, while the lowest mean concentration was $19.55\;Bq/m^3$ at Mokkol station on the 7th line subway stations. The highest concentration of radon in the road water and storing underground water in the subway stations was $234.7\;KBq/m^3\;and\;155.5\;KBq/m^3$ in Sodaemun subway station, respectively. The results suggest that radon concentration in subway stations seems to be affected by ventilation and radon concentratin in underground water in the subway stations.

Measurements of Carcinogenic Air Pollutants in Seoul Metropolitan Subway Stations (서울시 일부 지하철역내 대기오염물질에 대한 조사연구)

  • 김윤신;신응배;김신도;김동술;전준민
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.19-27
    • /
    • 1994
  • This paper reports an investigation of concentrations major carcinogenic indoor air pollutants for radon, formaldehyde, and asbestos in the 83 subway stations in the Seoul metropolitan area during November 1991~September 1992. Mean concentrations of indoor pollutants in Seoul subway stations surveyed were 0.23 ppb for formaldehyde, 1.12 pCi/l for radon, and 0.008 fiber/cc for asbestos. Mean formaldehyde concentrations in 83 subway stations were below the U.S. EPA formaldehyde standard (100 ppb), whereas mean concentrations of radon and asbestos in 2% and 22% of total sampled subway stations exceeded the U.S. radon (4 pCi/l) and asbestos (0.01 fiber/cc) standand, respectively. It is likely that possible sources for radon and asbestos are radon intrusion from the leaking underground water and construction materials, respectively.

  • PDF

A Study on the Guidelines for Demand Factor of Electrical Facilities in Subway Stations (지하철 역사전기설비의 수용률 기준설정에 관한 연구)

  • Jang, Su-Yong;Kim, Hak-Lyun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.844-849
    • /
    • 2006
  • The electric facilities for subway stations require reliable and safe electricity in spite of their load increases rapidly. Nevertheless, Korea Electrical Safety Corporation reports that the accidents of independent electric facilities increased greatly from 4,632 cases in 1998 to 6,024 in 1999 and 6,776 cases in 2000, while the ratio of the accidents related with transformers grew gradually. As it is, it is deemed very important to minimize the spreading effects of the electric system accidents and thereby, enhance reliability of the electric supply as well as its safety. According to the fact that the electric facilities for subway stations are important for the public safety and conveniences, it should be careful to set their capacity instead of simply applying the general capacity standard to them, and thereby, improve their economy as well as prevent their accidents. With such a basic conception in mind, this study is aimed at analyzing the characteristics of the electric load in the subway stations and thereupon, suggesting some guidelines for setting of the electric facility capacity for subway stations in terms of optimal operation and safety.

  • PDF

Characteristics of PM10 and PM2.5 Concentrations at Subway Stations in Busan for 3 years (2015~2017) (부산지역 지하역사의 최근 3년간(2015~2017년) PM10과 PM2.5 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.28 no.7
    • /
    • pp.581-594
    • /
    • 2019
  • This research investigated the characteristics of $PM_{10}$ and $PM_{2.5}$ concentrations at the main subway stations in Busan. Annual mean $PM_{10}$ concentrations at the Seomyeon 1- waiting room and platform were $51.3{\mu}g/m^3$ and $47.5{\mu}g/m^3$, respectively, and the annual $PM_{2.5}$ concentration at the Seomyeon 1- platform was $28.8{\mu}g/m^3$. $PM_{2.5}$/$PM_{10}$ ratio at Seomyeon 1-platform and Dongnae station were 0.58 and 0.53, respectively. Diurnal variation of $PM_{10}$ concentration at subway stations in Busan was categorized into four types, depending on the number of peaks and the times at which the peaks occurred. Unlike the areas outside of the subway stations which reported maximum $PM_{10}$ concentration mostly in spring across the entire locations, the interiors of the subway stations reported the maximum $PM_{10}$ concentration in spring, winter, and even summer, depending on their location. $PM_{10}$ concentration was highest on Saturday and lowest on Sunday. The numbers of days when $PM_{10}$ concentration exceeded $100{\mu}g/m^3$ and $80{\mu}g/m^3$ per day over the last three years at the subway stations in Busan were 36 and 239, respectively. The findings of this research are expected to enhace the understanding of the fine particle characteristics at subway stations in Busan and be useful for developing a strategy for controlling urban indoor air quality.

Greedy Heuristic Algorithm for the Optimal Location Allocation of Pickup Points: Application to the Metropolitan Seoul Subway System (Pickup Point 최적입지선정을 위한 Greedy Heuristic Algorithm 개발 및 적용: 서울 대도시권 지하철 시스템을 대상으로)

  • Park, Jong-Soo;Lee, Keum-Sook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.116-128
    • /
    • 2011
  • Some subway passengers may want to have their fresh vegetables purchased through internet at a service facility within the subway station of the Metropolitan Seoul subway system on the way to home, which raises further questions about which stations are chosen to locate service facilities and how many passengers can use the facilities. This problem is well known as the pickup problem, and it can be solved on a traffic network with traffic flows which should be identified from origin stations to destination stations. Since flows of the subway passengers can be found from the smart card transaction database of the Metropolitan Seoul smart card system, the pickup problem in the Metropolitan Seoul subway system is to select subway stations for the service facilities such that captured passenger flows are maximized. In this paper, we have formulated a model of the pickup problem on the Metropolitan Seoul subway system with subway passenger flows, and have proposed a fast heuristic algorithm to select pickup stations which can capture the most passenger flows in each step from an origin-destination matrix which represents the passenger flows. We have applied the heuristic algorithm to select the pickup stations from a large volume of traffic network, the Metropolitan Seoul subway system, with about 400 subway stations and five millions passenger transactions daily. We have obtained not only the experimental results in fast response time, but also displayed the top 10 pickup stations in a subway guide map. In addition, we have shown that the resulting solution is nearly optimal by a few more supplementary experiments.

  • PDF

Web Information Systems for Safety and Health Monitoring in Subway Stations

  • Choi, Gi-Heung
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.10-13
    • /
    • 2009
  • In this study, a framework for web-based information system in VDN environment for safety and health monitoring in subway stations is suggested. Since physical variables that describing safety and health need to be closely monitored in multiple locations in subway stations, concept of distributed monitoring network using wireless media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated and distributed monitoring performance, making a web-based information system possible.

A Study on Environmental Assessment and Countermeasures for Subway Stations - Mainly development of checklist for the Subway stations - (유니버셜 디자인 측면에서 지하철역 환경 평가와 개선방안 - 지하철 역 환경평가를 위한 체크리스트 개발을 중심으로 -)

  • 황원경;신경주
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2002.04a
    • /
    • pp.130-134
    • /
    • 2002
  • The main purpose of this study was to provide basic data for better design of subway station based on universal design principle. Conclusions based on the findings ate as follows: Checklists were developed to evaluate the subway stations facilities based on universal design principles Modified and/or complementary lists can be employed to develop the evaluation tools and can construct a database for defining the standard items in order to improve the facilites.

  • PDF