• 제목/요약/키워드: Subway particle

검색결과 66건 처리시간 0.023초

Low-Z particle EPMA 단일입자 분석법을 이용한 지하철 승강장에서 미세입자 특성 분석 (Characterization of Aerosols Collected at a Subway Station Platform Using Low-Z Particle Electron Probe X-ray Microanalysis)

  • 황희진;오미정;강선이;김혜경;노철언
    • 한국대기환경학회지
    • /
    • 제21권6호
    • /
    • pp.639-647
    • /
    • 2005
  • A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (EPMA), was applied to characterize samples collected at a subway station and ambient samples in Seoul. According to their chemical composition, many distinctive particle types were identified. For samples collected at the subway station platform, the major chemical species are carbon-rich, organic, aluminosilicates (AlSi), AlSi/C, AlSi/$CaCO_{3},\;CaCO_{3},\;SiO_{2},\;and\;Fe_{2}O_{3}$. For outdoor samples, carbon-rich, organic, AlSi, $CaCO_{3},\;SiO_{2},\;NaNO_{3},\;(Na,Mg)NO_{3},\;Na(CO_{3},NO_{3},SO_{4}),\;and\;(NH_{4})_2SO_4$, are abundantly encountered. Samples collected at the subway station show very high contents of $Fe_{2}O_{3}$, both in coarse and fine fractions, which come from brake block, subway train wheel, electric contact materials, etc. It is demonstrated that the single-particle characterization using this low-Z particle EPMA technique provided detailed information on various types of chemical species in indoor and outdoor samples.

Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis

  • Kim, Bo-Wha;Jung, Hae-Jin;Song, Young-Chul;Lee, Mi-Jung;Kim, Hye-Kyeong;Kim, Jo-Chun;Sohn, Jong-Ryeul;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권2호
    • /
    • pp.97-105
    • /
    • 2010
  • A quantitative single particle analytical technique, denoted low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize particulate matters collected at two underground subway stations, Jegidong and Yangje stations, in Seoul, Korea. To clearly identify the source of the indoor aerosols in the subway stations, four sets of samples were collected at four different locations within the subway stations: in the tunnel; at the platform; near the ticket office; nearby outdoors. Aerosol samples collected on stages 2 and 3 ($D_p$: $10-2.5\;{\mu}m$ and $2.5-1.0\;{\mu}m$, respectively) in a 3-stage Dekati $PM_{10}$ impactor were investigated. Samples were collected during summertime in 2009. The major chemical species observed in the subway particle samples were Fe-containing, carbonaceous, and soil-derived particles, and secondary aerosols such as nitrates and sulfates. Among them, Fe-containing particles were the most popular. The tunnel samples contained 85-88% of Fe-containing particles, with the abundance of Fe-containing particles decreasing as the distances of sampling locations from the tunnel increased. The Fe-containing subway particles were generated mainly from mechanical wear and friction processes at rail-wheel-brake interfaces. Carbonaceous, soil-derived, and secondary nitrate and/or sulfate particles observed in the underground subway particles likely flowed in from the outdoor environment by human activities and the air-exchange between the subway system and the outdoors. In addition, since the platform screen doors (PSDs) limit air-mixing between the tunnel and the platform, samples collected at the platform at the Yangjae station (with PSDs) showed a marked decrease in the relative abundances of Fe-containing particles compared to the Jegidong station (without PSDs).

Exposure to Fine Particle along Different Commuting Routes in Urban Area of Fukuoka, Japan

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권3호
    • /
    • pp.205-213
    • /
    • 2015
  • The objective of the current study was to assess the comparative risk associated with exposure to particulate matter (PM) while commuting via different public transport modes in Fukuoka, Japan. For the given routes and measuring days, a trip-maker carried a lightweight portable bag loaded the real-time measurement devices which take simultaneous measurement for size-fractioned particle number concentration, $PM_{2.5}$ mass concentration, and total suspended particle (TSP) collection. The results of the present study have shown significant differences between public transports as commuting modes in Fukuoka. The PM exposure levels on subway platform and inside subway train were overwhelmingly higher than those of other points on commuting route. The relative ratio between modes (i.e., the ratio of $PM_{2.5}$ inside subway to that inside bus) provides an idea for choosing a right commuting mode for our health. This study clearly provided evidence of the extremely high levels of iron exposure by subway uses compared to bus uses. The result of theoretically reconstructed mass concentration of $PM_{2.0-0.3}$ collected on subway platform suggests that the PM of underground subway will be associated with PM both generated in subway system and inleakaged from outdoor environment.

지하터널에서 주행하는 전동차의 하부에서 발생한 입자의 이동경로 예측 (Prediction of Trajectories of Particles Generated Underneath a Subway Train Running in An Underground Tunnel)

  • 이경란;김원근;육세진;우상희;김종범;배귀남;박형구;윤화현
    • 한국입자에어로졸학회지
    • /
    • 제11권1호
    • /
    • pp.21-28
    • /
    • 2015
  • In this study, the flow around a subway train running in an underground tunnel was numerically estimated. For the validation of the numerical results, the airflow velocity at a point underneath a subway train was measured using an ultrasonic anemometer. Then, the trajectories of particles generated at the contact points between the wheels and rails were numerically predicted. By considering the airflow velocity and particle trajectories, the space underneath the T-Car (trailer car) was expected to be appropriate for the room for the installation of a dust-removal system.

지하철 공기질 개선을 위한 분리형 2단 전기집진기의 집진 특성 분석 (Particle collection performance of a separated two-stage electrostatic precipitator for subway air purification)

  • 김예슬;이예완;김용진;한방우;김학준
    • 한국입자에어로졸학회지
    • /
    • 제16권4호
    • /
    • pp.119-130
    • /
    • 2020
  • In this study, we developed a separated two-stage electrostatic precipitator applicable in a subway air conditioning system. We studied the characteristics of collection efficiency of 0.3 ㎛ particle and ozone generation at different charger sizes and gaps of collector plates. Also, we compared the performance of the two-stage ESP to the MERV 10 filter with the removal efficiency of 10% used in actual subway air conditioning system. The maximum collection efficiency of 0.3 ㎛ particle was 93% at A charger (600 mm×250 mm×600 mm) and 84% at B charger (330 mm×280 mm×330 mm). Especially, with voltages applied to chargers with collection efficiency of about 80% or more, the ozone concentration of two different chargers was 5 ppb to 35 ppb. Finally, the filter quality of the collector developed in this study was 400 times higher than that of the MERV 10 filter. Therefore, it was concluded that the two-stage ESP could be a promising PM removal device suitable for subway air conditioning system.

출구형상에 따른 축상유입식 싸이클론의 입자제거효율 (Particle Collection Efficiency of Axial- flow Cyclone with Outlet Shape)

  • 권순박;김세영;김명준;박덕신;정우태;김태성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.128-131
    • /
    • 2011
  • Management of indoor air quality of underground subway station is an important issue. The air handling unit (AHU) installed in the underground subway station is the main facility determining the air quality of station. Especially for removing particulate matters, it is important to operate the appropriate air filter. In this study, we studied particle collection efficiency of axail-flow cyclone for subway AHU. The particle collection efficiencies of axial-flow cyclones with three different outlet shape have been evaluated.

  • PDF

지하철 공조실 미세먼지에 대한 자성포집연구 (Study of Magnetic Filtration for Subway MVAC Dust)

  • 박해우;정상귀;조영민
    • 한국입자에어로졸학회지
    • /
    • 제11권2호
    • /
    • pp.37-46
    • /
    • 2015
  • Dust particles, which inflow to the subway mechanical ventilation and air conditioning(MVAC) chamber, contain a fair amount of iron compounds, approximately 25.2w/w%. This work attempted to capture those iron containing dust using magnetic filters. Average magnetization value of the test MVAC dust was 0.012 emu on 5,000 Oe, which could correspond sufficiently with the magnetic interaction. External permanent magnets provided with magnetization of iron mesh screen showing high gradient magnetic field(HGM). It resulted in the capture efficiency with 84.0 ~ 99.7% and 81.2 ~ 99.8% for $PM_{10}$ and $PM_{2.5}$ respectively. Magnetic capture was found to be closely associated with the magnetic intensity, mesh opening size and flow velocity.

지하역사의 공기질 감시 시스템 구성에 관한 연구 (A Study on Indoor Air Quality Monitoring System for Subway Stations)

  • 이병석;황선주;이준화;김규식;김조천
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.48-50
    • /
    • 2009
  • This paper presents an IAQ(Indoor Air Quality) Monitoring System using equipments for measurement of fine Particle($PM1{\sim}PM10$), $CO_2$, VOCs(Volatile Organic Compounds), temperature and humidity for IAQ monitoring of subway station which millions of people use a day. The necessity of IAQ monitoring system is getting increased for more effective subway station monitoring in line with the recent government's regulation for IAQ is reinforcing. Subway Station is an unusual case. The structure of subway station is closed and complicated. Therefore when data of equipments are transferred, transmission error can happen occasionally. To prevent transmission error, an IAQ Monitoring System is needed the appropriate position and selection of equipments or sensor module. In addition IT(Information Technology) can be utilized like "WiBro(Wireless Broadband)" and "GateWay" for facilitate movement of data and construction of IAQ monitoring system of subway station.

  • PDF

도시철도 지하역사 공기조화기의 미세먼지 저감성능 개선을 위한 사전연구 (Pre-study for the improvement of air filtration performance in the air handling unit of subway station)

  • 강중구;신창헌;배성준;권순박;김세영;한석윤
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.541-545
    • /
    • 2008
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator re used in the air handling unit (AHU) of subway station. However, those systems are faced to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts is malfunctioned due to the high load of particulates and the filter material needs periodic replacement. In this study, we surveyed the particle removal systems in order to develop the new system of particle removing can be adopted in the current AHU of subway station.

  • PDF

지하철 역사의 실내공기질 개선을 위한 공조기 적용 공기청정장치 선정에 대한 기초연구 (Study of HVAC system with air cleaning system for indoor air quality of subway station)

  • 정의경;박재홍;이양화;윤기영;황정호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.537-540
    • /
    • 2008
  • A numerical study has been carried out on the optimization of an air cleaning system which was installed in a heating, ventilation and air conditioning system (HVAC) system of subway station for particle removal. Required particle removal efficiencies of three different air cleaning systems were calculated from ventilation rate, and indoor/outdoor concentration of PM10. Mass balance equations of PM10 were used to solve the required particle removal efficiencies. Fibrous filter was considered as an air cleaning system. Calculations were carried out about two different places which were waiting area and platform of subway station, respectively. This study proposed optimized design and operation condition of each air cleaning system.

  • PDF