• Title/Summary/Keyword: Subway construction site

Search Result 73, Processing Time 0.032 seconds

1. NATM design changed into open type excavation on the 8 meter overburden of subway construction. (지하철 선로부 토피 8m의 경우 NATM공법설계를 개착공법으로 대체한 실례)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.10 no.2
    • /
    • pp.3-7
    • /
    • 1992
  • Concerning to Taeku city subway construction project(1-4 site), the original design was adapted NATM Tunnel method to the 8 meter thickness of overburden. Surveyor checked sity and design material and finally decided to change into Open Cut method because overburden is not only below 1 1/2 times thickness of comparate Tunnel width but there is no traffic conjunction in job site.

  • PDF

A Study on the Establishment of Construction Cost Estimation Standard of Underground Steel Construction through Field Survey (지하철골공사 공사비산정기준 마련을 위한 현장조사 연구)

  • Song, Taeseok;Han, Sangjun;An, Bangyul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.339-340
    • /
    • 2023
  • Steel construction is one of the commonly used methods in building construction due to its efficiency in terms of time and cost. In particular, the top-down method using steel frames is widely used in the construction of underground structures in urban areas to shorten the construction period. However, there is currently no standardized cost estimation for subway steel frame construction in Korea, causing difficulties in determining the expected cost. In this study, we aim to provide basic data for establishing a cost estimation standard for subway steel frame construction through on-site surveys of subway steel frame construction commonly used in urban areas.

  • PDF

An Evaluation of Design and Construction Technology of Seoul Subway Tunnels (서울 지하철 터널의 설계 및 시공현황과 평가)

  • 김승렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10b
    • /
    • pp.51-76
    • /
    • 1993
  • More than sixty percentages of tunnels in the second phase of Seoul subway project have the ground coverages less than twenty meters. Majority of ground conditions encountered during turutel ling, therefore, are weathered rocks or weathered scils. Substantial lengths of tunnels are being constructed and designed running through the alluvial deposits as well. A comprehensive evaluation of current design and construction technology of Seoul subway tunnels is made with four categories such as site investigations, design concepts and methods, auxiliary measures and quality controls. Critical comments are given and some suggestions for the improvement of technology are presented.

  • PDF

Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation

  • Min-Zhe Xu;Zhen-Dong Cui;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • The soil-structure relative stiffness is a key factor affecting the seismic response of underground structures. It is of great significance to study the soil-structure relative stiffness for the soil-structure interaction and the seismic disaster reduction of subway stations. In this paper, the dynamic shear modulus ratio and damping ratio of an inhomogeneous soft soil site under different buried depths which were obtained by a one-dimensional equivalent linearization site response analysis were used as the input parameters in a 2D finite element model. A visco-elasto-plastic constitutive model based on the Mohr-Coulomb shear failure criterion combined with stiffness degradation was used to describe the plastic behavior of soil. The damage plasticity model was used to simulate the plastic behavior of concrete. The horizontal and vertical relative stiffness ratios of soil and structure were defined to study the influence of relative stiffness on the seismic response of subway stations in inhomogeneous soft soil. It is found that the compression damage to the middle columns of a subway station with a higher relative stiffness ratio is more serious while the tensile damage is slighter under the same earthquake motion. The relative stiffness has a significant influence on ground surface deformation, ground acceleration, and station structure deformation. However, the effect of the relative stiffness on the deformation of the bottom slab of the subway station is small. The research results can provide a reference for seismic fortification of subway stations in the soft soil area.

Estizmation of Structure Stability on the Ground to Vibration from Dual Composite Tunnels (이중 복합터널 상부구조물의 진동에 대한 안정성 평가)

  • Shin, S.M.;Jang, Y.S.;Lee, W.J.;Kwon, S.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1244-1250
    • /
    • 2008
  • The site of interest is a residence redevelopment area which has excavation construction with cut-off walls. The site is located over Dong-Mang-Bong tunnel and Seoul No. 6 subway tunnel. This study analyzed numerically the influence of vibrations from No. 6 subway tunnel to the basement of the redeveloped apartment away from the distance about 11m. Kyoung-bu highspeed railway's time history model with linearly reduced maximum acceleration is applied to take into the subway maximum speed of 75km/h. The maximum velocity of vibration for the cross section of the interest was estimated as 0.28cm/sec which satisfied the allowable standard of 0.5cm/sec for apartment and residence of Seoul.

  • PDF

A Study on the Bearing Capacity of Steel Composite Concrete Lining Board (강합성 콘크리트 복공판의 내력시험에 관한 연구)

  • Paik, Shinwon;Kim, Yongon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.122-126
    • /
    • 2012
  • Steel lining board usually is used as a floor on the temporary steel bridges. It also is installed in the subway construction site. However, in particular in subway construction, renovations and site of old bridges, these steel lining board structures have a problem such as noise, accidents and slip hazards. So steel composite lining board is being developed to solve this problem. Steel composite lining board consists of compressive concrete showing excellent performance in slip, durability, resistance and noise, lower tensile and shear steel showing high safety, effective and superior workability in many respects. Steel composite lining board structure gradually is used in many construction sites, because it has a high quality such as durability, little noise and slip. In this study, flexural tests of steel composite lining board in accordance with welding patterns were conducted to compare the performance of the structure.

Evaluation of Corrosion Thickness Loss of Temporary Steel Members Exposed to A Subway Construction Site (지하철 공사현장 환경하의 가시설 강재의 부식두께감소량 추정)

  • Kim, In Tae;Jeon, Sang Hyuck;Hur, Jung Ok;Cheung, Jin Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.301-310
    • /
    • 2009
  • Steel has been widely used as a material in temporary structures. Corrosion attack often reduces the long-term durability of temporary steel members that are not protected from corrosion. In designing temporary steel structures, it is difficult to evaluate their long-term durability, since the thickness loss of steel members is not clear. In this study, laboratory and field exposure corrosion tests were performed on structural steel plate specimens, and the loss of thickness of specimens that were exposed to a subway construction site for 11 months and of specimens that were exposed to environments with controlled humidity and calcium chloride for six months were measured. Finally, a thickness loss equation was formulated based on the environmental conditions and the testing periods.

The Practical Application on Super Flowing Concrete (Inchon subway 1-10 section) (초유동 콘크리트의 적용사례)

  • 박칠림;김성원;안재현;권영호;이상수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.916-921
    • /
    • 1998
  • This study describes the result for the placement of the super flowing concrete(SFC) in under-pinning-top-slab which is located Inchon subway section 1-10 where, due to heavy reinforcements and limited working space, it was difficult to place concrete. After placing 600㎥, smooth construction and quality control were possible due to the good flow-ability, self-fillingability, and the resistance of segregation of the SFC itself. Furthermore, economical efficiency was obtained through not only the reduction of the works, labors, and site noise but also the efficient construction control. Because of the crack prevention, high strength, and a fine concrete surface, this study could be considered as a momentum to be adopted generally for applying the proposed method to the difficult subway construction area in the near future.

  • PDF

A Study on the Construction Work to Reduce Vibration Effect to the Structure (건축물에 영향을 미치는 열차하중에 대한 방진공사에 관한 연구)

  • 김상용;윤지언;박태하;강경인
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.27-32
    • /
    • 2004
  • Recently, the expansion of social infrastructures and urban redevelopment, the construction works have been a rapidly increase. The subway's noise and vibration are on a continuously increasing status in its importance as by the industrial and cultural development process. Nevertheless, in our country, adequate alternative idea for the construction noise and vibration are not yet established. In this point, the purpose of this study is to know the vibration effect to the structure. This study was used to determine the standard of vibration and the way of losing vibration. The case of construction site is a good example. The data of this study was obtained by a construction company in Korea. Vibration effect could cause structural problems and affect human mental state. The results of this study are as follows; check the vibrating point, determine the suitable limit of vibration, make a good plan and construction.

  • PDF

Development of Pre-assessment Technique for Environmental Impact of Urban Subway Vibration on Newly Planned Buildings (도시지하철 진동이 신축예정 건축물에 미치는 영향에 대한 사전환경평가 기법개발)

  • 박상규;이홍기;박원형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1197-1200
    • /
    • 2003
  • Urban subways usually make environmental problems because subway vibrations are transmitted to building structures. However, when the buildings are designed, vibrations due to subway are not usually considered in advance. This results in many environmental vibration problems after buildings are constructed. This study was carried out to set up and evaluate a pre-assessment technique for the environmental impact of urban subway vibration on newly planned buildings near a subway line. for this purpose, semi-emperical method was set up and vibration measurements were made on site in accordance with construction schedule. Computer simulation was also performed using ANSYS software to predict the building vibration and compared with the measured results for evaluation of the pre-assessment technique.

  • PDF